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Higher Airy structures and topological recursion for singular
spectral curves

Gaëtan Borot, Reinier Kramer, and Yannik Schüler

Abstract. We give elements towards the classification of quantum Airy structures based on the
W.glr /-algebras at self-dual level based on twisted modules of the Heisenberg VOA of glr for
twists by arbitrary elements of the Weyl group Sr . In particular, we construct a large class of
such quantum Airy structures. We show that the system of linear ODEs forming the quantum
Airy structure and determining uniquely its partition function is equivalent to a topological
recursion à la Chekhov–Eynard–Orantin on singular spectral curves. In particular, our work
extends the definition of the Bouchard–Eynard topological recursion (valid for smooth curves)
to a large class of singular curves and indicates impossibilities to extend naively the definition
to other types of singularities. We also discuss relations to intersection theory on moduli spaces
of curves, giving a general ELSV-type representation for the topological recursion amplitudes
on smooth curves, and formulate precise conjectures for application in open r-spin intersection
theory.
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1. Introduction

Introduced by Kontsevich and Soibelman in [44], Airy structures consist of a system
of linear PDEs depending on a parameter „ and satisfying a compatibility condition,
so that they admit a simultaneous solution which is unique when properly normalised.
This solution is called “partition function” and is encoded in Taylor coefficients Fg;n
indexed by integers n � 1 and (half-)integers g � 0, which are determined by a topo-
logical recursion, i.e., a recursion on 2g� 2C n. The interest in Airy structures comes
from the numerous applications of the topological recursion in enumerative geometry,
see, e.g., [34].

The purpose of Part I of this work is to construct new Airy structures from repres-
entations of the W.glr/-algebra. The latter is realised as a sub-VOA of the Heisenberg
VOA FCr . Twisting the free field representation of FCr by an arbitrary element of the
Weyl group � 2 Sr gives rise to an (untwisted) representation of W.glr/. Applying
a “dilaton shift”, [9] constructed all the Airy structures that can arise when � is an
r-cycle or an .r � 1/-cycle. Our work explores the possibility of constructing Airy
structures from arbitrary � 2Sr : we will obtain in Theorem 2.11 conditions on � and
the dilaton shifts that are sufficient for the success of this construction. This gives rise
to many new Airy structures and thus partition functions, for which it would be desir-
able to find enumerative interpretations. If one contents oneself with the existence of
a partition function only solving the PDEs to leading order in „ (i.e., existence of
FgD0;n), we give less restrictive conditions for this in Theorem 2.13. Our approach
and the results are presented in Section 2 while Section 3 is devoted to the proof of
the main Theorem 2.11.

In Part II, we show that the topological recursion for all these Airy structures
can be equivalently formulated via residue (hence, period) computations on possibly
singular spectral curves. Roughly speaking, a spectral curve is a branched cover of
complex curves xW C ! C0 equipped with a meromorphic function y and a bid-
ifferential !0;2 on C 2. The original formulation of the topological recursion, with
a spectral curve as input, was developed by Chekhov, Eynard and Orantin [36, 37] in
the case of smooth curves with simple ramifications. The output of this CEO recursion
is a family of multidifferentials !g;n on C n that have poles at ramification points of x,
are symmetric under permutation of the n copies of C , and are obtained recursively
by residue computations on C . As observed already in [37] and revisited in [4, 44],
the corresponding Airy structure is based on the Virasoro algebra and related to the
W.gl2/-algebra; for each g and n, Fg;n and !g;n contain the same information pack-
aged in a different way. The definition of the CEO topological recursion was extended
in [14, 16] to smooth curves with higher-order ramification points, and its corres-
pondence with W.glr/-Airy structures when � is an r-cycle was established in [9].
An important application of this correspondence is a conceptual proof of symmetry of
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the !g;n based on the representation theory of W -algebras. This led to the discovery
of a non-trivial criterion on the order of y at ramification points for the symmetry to
hold. From [16], it is easy to propose a definition of the CEO recursion that is also
valid for singular spectral curves (see equation (5.7)), i.e., if C has several irreducible
components intersecting at ramification points of arbitrary order. It is however unclear
(and in fact not always true) that this definition leads to symmetric !g;n.

In Proposition 5.18 and Theorem 5.23, we show that this definition naturally arises
from the W.glr/-Airy structures with arbitrary permutation � encoded the ramifica-
tion profile over a branchpoint in a normalisation of C , and dilaton shifts specifying
the order of y at the ramification points. Smooth spectral curves correspond to �
having a single cycle. Besides, the basic properties of Airy structures guarantee that
the corresponding !g;n are symmetric. The results of Part I therefore give sufficient
conditions on the ramification type and the order of y at ramification points for the
symmetry to hold, see Definitions 5.19–5.22 and 5.25. The central result of Part II is
then Theorem 5.23 giving the correspondence between those Airy structures and our
extension of the CEO topological recursion.

In terms of spectral curves, the CEO-like topological recursion provides the (uni-
que when properly normalised) solution to the so-called “abstract loop equations”.
The latter express that certain polynomial combinations of the !g;n are holomorphic
at the ramification points. This in fact provides tools that have been used to estab-
lish applications of the topological recursion, e.g., in matrix models [10], in Hurwitz
theory [12, 29], and for the reconstruction of WKB expansions [6, 7, 41]. The setup
of abstract loop equations was developed in [10, 13] for smooth curves with simple
ramifications and extended in [45, Section 7.6] to higher-order ramifications. In Sec-
tion 5.3, we define a notion of abstract loop equations for arbitrary spectral curves
(Definition 5.12) and prove they admit at most one normalised solution (Proposi-
tion 5.15), which must then be given by our extension of the CEO recursion, see (5.7).
The question of existence of a solution is then reduced to proving that this formula
yields symmetric !g;n. As we establish the equivalence of the abstract loop equations
with the differential constraints built from W.glr/-algebra representations (Proposi-
tion 5.18), it is sufficient to check that the latter form an Airy structure to establish
symmetry. If the associated PDEs admit a partition function solving them to leading
order in „, this is sufficient to prove symmetry of the !0;n (Theorem 5.26).

Our results give a definition of topological recursion for many spectral curves that
could not be treated before, for instance,

y.x � yr/ D 0; r � 1;

.1 � xy3/ D 0;

x2 � y2 D 0;

.1 � xy3/.x � y C 1/ D 0; (1.1)
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.1 � xy3/.x � y C 1/.x � y C t / D 0; t 2 C n ¹1º;

.1 � xy3/.x � y C 1/.y � t / D 0; t 2 C;

.1 � xy2/.x � y C 1/.x � ty/ D 0; t 2 C n ¹1º:

In general, nodal points such that y tends to distinct non-zero values on both sides are
admissible. If Ci WPi .x;y/D 0 are admissible for i 2 ¹1; 2º and do not intersect in C2

at zeroes of dx or singular points of Ci , then C WP1.x; y/P2.x; y/ D 0 is admissible.
The complete list of conditions defining admissible spectral curves according to our
work can be found in Section 5.4, and they only regulate the behavior of x and y at
the points where the cardinality of the fibers of x jump (zeroes of dx and singular
points). Examples of non-admissible curves are:

1 � x2y5 D 0;

.x � y2/.1 � xy2/ D 0;

.x � y/.x � yr/ D 0 r 2 Z;

xp � yq D 0 p; q coprime and p > 1; q > 0;

.x � y2/2 D 0;

.x � y2/.x � y3/ D 0:

(1.2)

In general, the following cases are not admissible for us: non-reduced curves, curves
where dy and dx have a common zero, reducible curves where there is a point at
which at least two irreducible components C1 and C2 meet and where dx has a zero
and y is regular on C1 and y is not identically zero on C2. It would be desirable to
understand if the admissibility conditions can be weakened even more with a suitable
modification of the topological recursion residue formula.

We expect all the partition functions of the Airy structures present in this article
to admit an enumerative interpretation, i.e., that !g;n or Fg;n can be computed via
intersection theory on a certain moduli space of curves. This was achieved by Eynard
in [32, 33] in the case of simple ramification points on smooth curves and y holo-
morphic, in a form that has a structure similar to the ELSV formula [31], and found
applications in Gromov–Witten theory [38] and Hurwitz theory [46, 55]. The case
of y having a simple pole was later treated by Chekhov and Norbury [24,49]. Part III
explores the generalisations of this link to other spectral curves that can directly be
reached by combining known results with the results of Parts I and II. This stresses
the role of Laplace-type integrals on the spectral curve. Although it is not essen-
tial in the theory, in the case of global spectral curves the Laplace transform of !0;2
enjoys a factorisation property reminiscent of the use of R-matrices in the theory of
Frobenius manifolds. This was known by [33, Appendix B] for smooth spectral curves
with simple ramifications, and we show in Corollary 7.12 that it extends to singular
spectral curves in a slightly different form.
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In Sections 7.2.3–7.5.4, building on [9] and Theorem 5.23 we generalise Eynard’s
formula from [32, 33] to all smooth spectral curves with arbitrary ramification and y
of order 1 at the ramification points – this involves Witten spin classes. In the case of
global smooth spectral curves (i.e., obeying the precise conditions Definition 7.27),
it leads in Corollary 7.29 to an intersection-theoretic formula for decomposition of
the !g;n on the descendants of the primary differentials. We deduce in Corollary 7.32
that the coefficients of expansion of !g;n near simple poles of dx are given by an
ELSV-like formula and displaying a quasi-polynomiality property. This answers a
question of Shadrin to the first-named author. In Section 8, we apply our general
results to the W.gl3/-constraints of Alexandrov [1] for the open intersection theory
developed in [18,21,51,56]. The open intersection numbers can be packaged in a gen-
erating series !open

g;n . As Alexandrov’s W.gl3/-constraints have been identified with
an Airy structure in [9] for � D .12/.3/, we deduce from the results of Part II that
!

open
g;n satisfies our extension of the CEO topological recursion applied to the curve
y.y2 � 2x/ D 0 (Corollary 8.8). Using modified W -constraints, Safnuk had derived
in [53] a residue formula associated to this curve, but its structure is different and not
easily generalisable. On the other hand, we can easily conjecture a residue formula for
the open r-spin theory. This conjecture is equivalent to the W.glr/ constraints first
mentioned in [9, Section 6.3]: we expose it in more detail, in particular specifying the
normalisations necessary for the comparison, and give some support in its favor by
comparison with [20].

Remark 1.1. At the time of writing, there are several foundational conjectures in
open intersection theory. In Sections 8.1 and 8.5, we formulate the ones that are dir-
ectly relevant for us and explain the logical dependence of our statements on these
conjectures.

In fact, one of the initial motivations of our work was to generalise the structure of
Safnuk’s residue formula [53] to higher r and seek along this line for a definition of
topological recursion for curves with many irreducible components. Our conclusion
is that, although we do not know how to generalise the structure of Safnuk’s recur-
sion, there is a simpler and general definition of the recursion, which retrieves open
intersection theory when applied to the reducible curve y.y2 � 2x/ D 0.

The W.glr/-representations that we consider have an explicit though lengthy
expression. We extract from them a few concrete calculations:

• General formulas for F0;3, F 1
2 ;2

and F1;1, and partial computations for F0;4 in the
undeformed case. Their symmetry gives necessary constraints for the twist � and
the dilaton shifts. Remarkably, the symmetry conditions governing F0;3 and F0;4
exactly match those found in Theorem 2.13 which are sufficient for all .F0;n/n�0
to be symmetric. Taking the additional symmetry conditions of F 1

2 ;2
for a generic
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choice of F 1
2 ;1

into account, we find that these are only slightly weaker than the
sufficient conditions under which we have an Airy structure according to The-
orem 2.11. Hence, we are inclined to think that also this result is generically
optimal. This could be implied by the analysis of the symmetry of F 1

2 ;n
for higher

n � 3.

• If � D .1 � � � r � 1/.r/ or .1 � � � r/, we derive in Section 2.4 from the W -constraints
a homogeneity property, the dilaton equation, and the string equation when it
applies.

While this work was in the final writing stage, we learned that results similar to
our Theorem 2.11 but restricted to the case of cycles of equal lengths (perhaps with
a fixed point) are obtained in an independent work of Bouchard and Mastel [17]. The
question of defining a Chekhov–Eynard–Orantin topological recursion on singular
curves mentioned in their work is solved by Part II of our work.

Notation

As usual, N is the set of nonnegative integers and N�DN n ¹0º. For n2N, we denote
Œn� D ¹1; : : : ; nº, and in particular Œ0� D ;. More generally, if a � b are integers, we
denote by Œa; b�, Œa; b/, .a; b�, .a; b/ the integer segments, where the bracket (resp.
parenthesis) means we include (resp. exclude) the corresponding endpoint. If a > b,
we set Œa; b� D ;. Furthermore, zŒn� D ¹z1; : : : ; znº.

A partition of r 2 N, denoted � ` r , is � D .�1; : : : ; �`/ such that �1 C � � � C
�` D r . We will sometimes (but not always) require �j � �jC1, in which case we
say that � is a descending partition. Often it is convenient to express equal blocks
�j D �jC1 D � � � D �jCn as �nj . Moreover, to any descending partition � one can
associate a Young diagram Y� in a bijective way. For example, all notations

� D .4; 3; 3; 1/$ � D .4; 32; 1/$ Y� D

characterise the same descending partition � ` 11. The size of � is j�j D
P
i �i and its

length is `.�/ D max¹i j �i > 0º. Given partitions �1; : : : ; �n of integers r1; : : : ; rn,
we will write .�1; : : : ; �n/ WD .�11; : : : ; �

1
`.�1/

; �21; : : : ; �
n
`.�n/

/ for their concatenation,
which we see as a partition of

Pn
jD1 rj .

If A is a finite set, we write L ` A to say that L is a partition of A, that is, an
unordered tuple of pairwise disjoint non-empty subsets of A whose union is A. We
denote by jjLjj the number of sets in the partition L.

All of our vector spaces or algebraic spaces are over C. We denote by Chyi a one-
dimensional complex vector space equipped with a non-zero linear form y.
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Part I
Classification of W .glr/-Airy structures

2. Constructing Airy structures

In this section, we recall the definition of Airy structures and their partition function
and its adaptation to the infinite-dimensional setting for which it will be used. We
present the main results of Part I, i.e., we exhibit the new Airy structures that can be
constructed from W.glr/-algebra modules, while the proofs are carried out in Sec-
tion 3.

2.1. Preliminaries on Airy structures

2.1.1. Finite dimension. We first present the definition when E is a finite-dimen-
sional C-vector space. For convenience, let us fix a basis .ea/a2A ofE and .xa/a2A be
the dual basis ofE�. We consider the graded algebra of differential operators D„E , also
called Weyl algebra. It is the quotient of the free algebra generated by „

1
2 , .xa/a2A

and .„@xa/a2A, modulo the relations generated by

Œ„@xa ; xb� D „ ıa;b; Œxa; xb� D Œ„@xa ; „@xb � D 0; a; b 2 I; „ central;

and equipped with the grading

deg xa D deg „@xa D deg „
1
2 D 1:

We will write P D Q C O.n/ for two elements P;Q 2 D„E if they agree up to at
least degree n � 1 and use the notation

P D QC o.„n/ if P �Q 2 „nD„E :

Definition 2.1. A family .Hi /i2I of elements of D„E is an Airy structure on E in
normal form with respect to the basis .xa/a2A if I D A and it satisfies the following
conditions:

• The degree 1 condition: for all i 2 I , we have

Hi D „@xi CO.2/: (2.1)

• The subalgebra condition: there exist f ki;j 2 D„E such that for all i; j 2 I

ŒHi ;Hj � D „
X
k2A

f ki;j Hk : (2.2)
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A family .Hi /i2I of elements of D„E is an Airy structure if there exist two matrices
N 2 CA�I and M 2 CI�A such that

8a; b 2 A;
X
i2I

Na;iMi;b D ıa;b;

8i; j 2 I;
X
a2A

Mi;aNa;j D ıi;j
(2.3)

and the family zHa D
P
i2I Na;i Hi indexed by a 2 A is an Airy structure in normal

form.

Being an Airy structure does not depend on a choice of basis, but being an Airy
structure in normal form does. Airy structures in Definition 2.1 would be called in [9]
“crosscapped higher quantum Airy structure”. “Crosscapped” refers to the presence
of half-integer powers of „, and we comment on it in Section 2.3.5. “Higher” means
that, compared to the definition in [4,44], it can contain terms of degree higher than 2.
“Quantum” is used to distinguish it in [4,44] from the classical Airy structures where
the Weyl algebra is replaced by the Poisson algebra of polynomial functions on T �E.
We simplified the terminology as the restriction to maximum degree 2 and the clas-
sical Airy structures will not play any role in this article and handling half-integer
powers of „ does not lead to any complication in the theory.

The essential property of an Airy structure is that it specifies uniquely a formal
function on E.

Theorem 2.2 ([44, Theorem 2.4.2], [9, Proposition 2.20]). If .Hi /i2I is an Airy struc-
ture on E, then the system of linear differential equations

8a 2 A; Z�1HaZ � 1 D 0 (2.4)

admits a unique solution Z of the form Z D exp.F / with

F D
X

g2 12Z�0
n2Z>0

2gC2�n>0

„g�1

nŠ
Fg;n; Fg;n 2 Symn.E�/: (2.5)

The function Z (resp. Fg;n) is called the partition function (resp. free energies).
Equation (2.4) implies a recursive formula for Fg;n on 2g � 2C n > 0. We will typ-
ically be interested in the coefficients of decomposition of the free energies on a given
basis .xa/a2A of linear coordinates of E, for which we use the notation

Fg;n D
X

a1;:::;an2A

Fg;nŒa1; : : : ; an�xa1 � � � xan : (2.6)
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When the Airy structure has normal form with respect to this basis, the explicit recur-
sion to obtain the Fg;nŒa1; : : : ; an� appears in [9, Sections 2.2 and 2.3]. We reproduce
it in equation (2.32) at the only place where it is used in the article. We will be led to
work with Airy structures that are not given in normal form (cf. Section 3.1), but for
which there is an equivalent formulation of the recursion in terms of spectral curves
(Part II), that is often more efficient for calculations (cf. Section 6).

2.1.2. Infinite dimension. In this article, we need to handle Airy structures for cer-
tain infinite-dimensional vector spaces. This requires some amendments to the previ-
ous definitions which we now explain.

A filtered vector space is a vector space E together with a collection of subspaces

0 � F1E � F2E � � � � � E;

called the filtration. Throughout this paper, we will assume that for any filtered vector
space E, the FpE are finite-dimensional, and that E D

S
p>0 FpE. Two filtrations

F , F 0 on a vector space E are equivalent if for any p > 0 there exists p0 > 0 such
that FpE � F 0p0E and for any q0 > 0 there exists q > 0 such that F 0q0E � FqE.
In particular, all filtrations on a given vector space satisfying our extra assumptions
are equivalent.

A filtered set is a set A together with a collection of subsets

; � f1A � f2A � � � � � A:

Again, we assume all fpA are finite and A D
S
p>0 fpA. A filtered basis of a filtered

vector space .E;F / is the data of a filtered set .A; f / and a family .ea/a2A of ele-
ments of E such that .ea/a2fpA is a basis of FpE.

Let .E;F / be a filtered vector space, and for convenience choose a filtered basis
.ea/a2A and the corresponding linear coordinates .xa/a2A. We consider the com-
pleted Weyl algebra with respect to this filtration, yD„E . It consists of elements of the
formX
m;n2Z�0
j2 12Z�0

X
a1;:::;an2A
xa1;:::;xam2A

„j

nŠmŠ
C .j /Œxa1; : : : ; xamI a1; : : : ; an�xxa1 � � � xxam„@xa1� � � „@xan ; (2.7)

where for any p > 0, the coefficients C .j /Œxa1; : : : ; xamI a1; : : : ; an� vanish for all but
finitely many a1; : : : ; an 2 fpA and j; xa1; : : : ; xam. One can check this does form
a (graded) algebra.

If .I; f 0/ is a filtered set (which is unrelated to .A; f /), we say that a family
.Di /i2I of elements of yD„E is filtered if for any p > 0, the coefficients

C
.j /
i Œxa1; : : : ; xamI a1; : : : ; an�
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in decomposition (2.7) of Db vanish for all but finitely many a1; : : : ; an 2 fpA and
i; j; xa1; : : : ; xan.

Definition 2.3. A filtered family .Hi /i2I of elements of yD„E is an Airy structure onE
in normal form with respect to .xa/a2A if .I; f 0/ D .A; f /, and

• the degree one condition holds;

• the subalgebra condition holds for some filtered family .f ki;j /i;j;k2I of elements
of yD„E .

A filtered family .Hi /i2I of elements of yD„E is an Airy structure on E if there exist
N 2 CA�I and M 2 CI�A such that

• for each i 2 I , Na;i vanish for all but finitely many a 2 A;

• for each a 2 A, Mi;a vanish for all but finitely many i 2 I ;

• N and M are inverse to each other in the sense of (2.3), where the sums are finite
due to the previous two points;

• the family zHa D
P
i2I Na;iHi indexed by a 2 A (which is a filtered family of

elements of yD„E by the first point) is an Airy structure on E in normal form with
respect to .xa/a2A.

The notion of Airy structure does not depend on the choice of filtered basis,
and only depends on the equivalence class of the filtration of E. We will sometimes
omit to specify the filtration when it is evident. The existence and uniqueness of the
partition function (Theorem 2.2) extends to this infinite-dimensional setting, and for
each g, n, and p, the summation of (2.6) with a1 restricted to fpA is finite, that is,
Fg;n 2 4Symn.E�/.

2.2. Preliminaries on the W .glr/-algebra and its twisted modules

The Airy structures constructed in this paper are obtained by considering twisted
modules of Heisenberg vertex operator algebras (VOAs), taking subalgebras of the
associated algebras of modes, and using a dilaton shift to break homogeneity. The
idea of this construction dates back to [48]. It was developed more systematically
in [9, Sections 3 and 4], and we refer to that paper for details. Here we summarise the
main points of the construction.

2.2.1. The Heisenberg vertex operator algebra and W .glr/-algebra.

Definition 2.4. Let h be a finite-dimensional vector space with non-degenerate inner
product h�; �i. The Heisenberg Lie algebra associated to h is given by

yh D .hŒt˙1�˚CK/˝C„; Œ�l C aK; �m C bK� D „h�; �ilılCm;0K;
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where we write �l WD � ˝ t l , and C„ WD CŒ„
1
2 �. The associated Weyl algebra is

defined as a quotient of its universal enveloping algebra: Hh WD U.yh/=.K � 1/. The
Fock space Fh is the representation of Hh generated by a vector j0i and relations
�l j0i D 0 for � 2 h, l � 0. The Heisenberg VOA is the vertex operator algebra with
underlying vector space Fh equipped with vacuum j0i, state-field correspondence
Y WFh ! End FhJzx˙1K given by

Y.j0i; zx/ D idFh
;

Y.��1j0i; zx/ D
X
l2Z

�l zx
�l�1;

Y.�1
�k1
� � � �n

�kn
j0i; zx/ D W

1

.k1 � 1/Š

dk1�1

dzxk1�1
Y.�1�1j0i; zx/ � � �

�
1

.kn � 1/Š

dkn�1

dzxkn�1
Y.�n�1j0i; zx/W;

(2.8)

and conformal vector $ D 1
2

P
j �

j
�1�

j
�1j0i for an orthonormal basis .�j /j of h.

The W -algebra associated to the general linear Lie algebra glr at the self-dual
level is denoted by W.glr/. It can be constructed as a sub-VOA of the Heisenberg
VOA Fh attached to its Cartan subalgebra h Š Cr � glr . We identify h with its
dual using the Killing form and take �j 2 h to correspond to the roots under this
identification. Note that they are orthonormal.

Theorem 2.5 ([5, 47]). W.glr/ is the sub-VOA of Fh freely and strongly generated
by the elements

wi D ei .�1�1; : : : ; �
r
�1/ j0i ; i 2 Œr�; (2.9)

where ei is the i -th elementary symmetric polynomial in r variables.

We introduce the modes Wi;k and their (i -form valued) generating series Wi .zx/
with the formulas

Wi .zx/ WD
X
k2Z

Wi;k.dzx/i

zxiCk
WD Y.wi ; zx/.dzx/i : (2.10)

Remark 2.6. Contrarily to [9], we do not include a factor of r i�1 in the definition
of wi . Our convention is that Wi;k is the coefficient of zx�.kCi/. This coincides with
the convention taken in [9, Section 3.3.4] but differs from the convention zx�.kC1/

used in the rest of [9]. We also find it convenient to consider the generating series
of modes of conformal weight i to be i -differential forms. The variable zx is often
denoted by z in the VOA literature. However, in Part II, we will see that this variable
can be interpreted as the pullback under the normalisation morphism of a function
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usually denoted x for a spectral curve. For consistency, we therefore chose to use the
letter zx, and use the letter z for local coordinates on (the normalisation of) the spectral
curve.

2.2.2. The mode algebra and its subalgebras. Let A be the associative algebra
of modes of W.glr/, see [40, Section 4.3]. Furthermore, let L.A/ denote the set of
possibly infinite sums of ordered monomials in A whose degree and conformal weight
is bounded; we equip it with the bracket „�1Œ�; ��, making it a Lie algebra.

Definition 2.7. We say that a subset S � Œr��Z of modes generates a Lie subalgebra
of L.A/ if the left A-ideal generated by ˚.i;k/2SWi;k is a Lie subalgebra of L.A/.
An equivalent condition is the existence of f .j; l/

.i;k/;.i 0;k0/
2 L.A/ such that

8.i; k/; .i 0; k0/ 2 S; ŒWi;k; Wi 0;k0 � D „
X

.j;l/2I�

f
.j;l/

.i;k/;.i 0;k0/
Wj;l :

More precisely, it is first required that the right-hand side defines an element of L.A/,
and then that it coincides with the left-hand side.

Given a partition � ` r , we set

�.i/ WD min
²
m � 0

ˇ̌̌̌ mX
jD1

�j � i

³
;

and we define the index set

I� WD ¹.i; k/ 2 Œr� � Z j �.i/C k > 0º: (2.11)

Theorem 2.8 ([9, Theorem 3.16]). For any descending partition � ` r , I� generates
a Lie subalgebra of L.A/.

2.2.3. Twisted modules. Let � 2 Sr be an arbitrary element of the Weyl group
of glr . It is a permutation of the elements �i and can thus be decomposed into d � 1
cycles � D �1 � � ��d with each cycle �� of length r� � 1 such that r1C � � � C rd D r .
If d D 1, then � is a transitive element. After relabelling of the elements of the basis
of the Cartan, we can assume that �� acts as

��W �
1CrŒ��1� ! �2CrŒ��1� ! � � � ! �r�CrŒ��1� ! �1CrŒ��1� ;

while keeping all other �i fixed, where we introduced the notation r Œ�� WD
P�
�D1 r� .

It is then easy to check that

v�;a WD

r�X
jD1

#�ajr�
�jCrŒ��1� ; � 2 Œd �; a 2 Œr��; #r� WD e

2i�=r�
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is an eigenvector of the action of � on h with eigenvalue #ar� . We define the currents
via the state field-correspondence

J�;a.zx/ WD �Y.v
�;a

.�1/
j0i ; zx/ dzx WD

X
k2 ar�CZ

J
�

r�k

dzx
zxkC1

(2.12)

with fractional mode expansion on these eigenvectors, after introducing the differen-
tial operators

J
�

k
D

8̂̂<̂
:̂
„@x�

k
if k > 0;

„
1
2Q� if k D 0;

�k; x
�

�k
if k < 0

(2.13)

with Q� 2 C, acting on the space

T WD C
„
1
2
Œ.x�a /�2Œd�; a>0�:

Note that the formal variables zx and x�i are unrelated. The state-field correspond-
ence �Y can be extended to the whole space Fh by using formula (2.8). This turns
.T ; �Y / into a twisted representation of Fh, whose restriction to W.glr/ becomes
an (untwisted) representation of W.glr/. For details see [9, 28]. We define the twist
modes �Wi;k by

�Wi .zx/ WD
�Y.wi ; zx/ .dzx/i D

X
k2Z

�Wi;k
.dzx/i

zxkCi
;

where wi are the strong generators of W.glr/ from (2.9). They are differential oper-
ators acting on T .

Lemma 2.9 ([9, Proposition 4.5 and Lemma 4.15]). For an automorphism � with d
cycles of respective lengths r�, the � -twisted modes read

�Wi;k D
X
M�Œd�

X
i�2Œr��; �2MP

� i�Di

X
k2ZMP
� k�Dk

Y
�2M

1

r
i��1
�

W
�

i�;k�
; (2.14)

where the W �

i�;k�
are defined by

W
�

i�;k�
D

1

r�

bi�=2cX
j�D0

i�Š „
j�

2j�j�Š.i� � 2j�/Š

�

X
p
�

2j�C1
;:::;p

�

i�
2ZP

l p
�

l
Dr�k�

‰
.j�/
r� .p

�
2j�C1

; p
�
2j�C2

; : : : ; p
�
i�
/ W

i�Y
lD2j�C1

J
�

p
�

l

W; (2.15)
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with coefficients‰.j�/r� .� � � / 2Q admitting a representation in terms of sums over r-th
roots of unity

‰.j /r .a2jC1; : : : ; ai /

WD
1

iŠ

r�1X
m1;:::;miD0
ml¤ml0

� jY
l 0D1

#m2l0�1Cm2l0

.#m2l0 � #m2l0�1/2

iY
lD2jC1

#�mlal
�
; (2.16)

where # D e2i�=r .

In terms of generating series, this lemma can be restated as

�Wi .zx/ D
X
M�Œd�

X
i�2Œr��; �2MP

� i�Di

Y
�2M

W
�
i�
.zx/

r
i��1
�

;

W
�
i .zx/ WD

1

r�

bi=2cX
jD0

i Š „j

2j j Š.i � 2j /Š

�dzx
zx

�2j
�

� r��1X
a2jC1;:::;aiD0

‰.j /r� .a2jC1; : : : ; ai / W

iY
lD2jC1

J�;al .zx/ W

�
:

(2.17)

If we also take a generating series in i by defining

W�.zx; u/ WD
ur�

r�
C

r�X
iD1

W
�
i .zx/u

r��i ;

W.zx; u/ WD ur C

rX
iD1

�Wi .zx/u
r�i ;

this can be written compactly as

W.zx; u/ D

dY
�D1

r�W�.zx; u/:

Introducing the filtered vector space

E D
M
k>0

dM
�D1

Chx�
k
i; Ep WD

M
k�p

dM
�D1

Chx�
k
i; (2.18)

we see from the condition of summations in (2.14)–(2.15) that each Wi;k belongs to
the completed Weyl algebra yD„E according to the definitions in Section 2.1.2. Even
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more, any family .Wi;k/.i;k/2I for which minI k > �1 is a filtered family of ele-
ments of yD„E . Our goal is to construct Airy structures from these operators. The
degree one condition requires the operators to have the form „@ C O.2/. Unfortu-
nately, �Wi;k does not have this form as it is homogeneous of degree deg �Wi;k D i
in view of (2.14). Thus in order to construct an Airy structure, we first have to break
this homogeneity.

2.3. Airy structures from twisted W .glr/ modules

We can now summarise the main findings of Part I. Before presenting the new basic
Airy structures we have found in Section 2.3.2, we review in Section 2.3.1 the ones
known from [9]. Section 2.3.3 gives the general form of the Airy structures that can be
obtained by deformation of those basic ones through conjugation in the Weyl algebra,
which will be important for the correspondence with spectral curves in Part II. This
provides so far sufficient conditions on the parameters of our construction so that
it does produce Airy structures. It is natural to wonder if these conditions are also
necessary (classification problem). In Section 2.3.4, we summarise the conditions we
have found necessary to get Airy structures.

2.3.1. From a twist with a transitive element. First, let � be a transitive element,
i.e., d D 1. Then

�Wi;k D r
1�iW 1

i;k;

and to simplify the notation we can omit the superscript 1. One can break up the
homogeneity of the differential operators �Wi;k by performing a dilaton shift

J�s ! J�s � 1 (2.19)

for a fixed s > 0 while keeping all other Ja for a ¤ �s unchanged. Formally, one
defines

�Hi;k WD yT �
�Wi;k � yT

�1; yT WD exp
�
�
Js

„s

�
:

It follows from the Baker–Campbell–Hausdorff formula that conjugating with yT
means shifting the J s as in (2.19). The action on the completed Weyl algebra yD„E is
then well-defined. Then, certain subsets of the modes �Hi;k yield Airy structures.

Theorem 2.10 ([9, Theorem 4.9]). Let � 2 Sr be transitive and s 2 Œr C 1� with
r D ˙1 mod s and J0 D 0. Let us define �r;s ` r to be the descending partition

�r;s D

8̂̂<̂
:̂
.r/ if s D 1;

.1r/ if s D r C 1;

..r 0 C 1/r
00

; .r 0/s�r
00

/ if r D r 0s C r 00 with r 00 2 ¹1; s � 1º:

(2.20)
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Then, the family of operators

r i�1 �Hi;k; i 2 Œr�; k � 1 � �r;s.i/C ıi;1

forms an Airy structure in normal form onE D
L
k>0Chxki, seen as a filtered vector

space when equipped with the filtration Ep D
L
k�p Chxki.

The partition �r;s chosen in (2.20) to define the mode set determines the sub-
algebra associated to this Airy structure by using Theorem 2.8. The corresponding
Young diagrams are depicted in Table 1.

r , s s D 1 r D r 0sC 1 r D r 0sC s � 1 s D r C 1

�r;s

r boxes‚ …„ ƒ
: : :

.r 0C1/ columns‚ …„ ƒ
: : :

: : :

: : :
:::

:::
: : :

:::

: : :

: : :

.r 0C1/ columns‚ …„ ƒ
: : :

: : :

: : :
:::

:::
: : :

:::
:::

: : :

: : :

:::

Table 1. The partitions �r;s associated to different values s.

2.3.2. A generalisation to arbitrary twists. Let � 2 Sr be a permutation with d
cycles of respective lengths r1; : : : ; rd , so that r1C � � � C rd D r . Then the differential
operators �Wi;k act on the space

C
„
1
2
Œ.x�a /�2Œd�; a>0�:

Again, we will break up the homogeneity of �Wi;k by performing a dilaton shift.
There are d independent families of variables .x�a /a>0 labelled by � 2 Œd � in which
we can perform the shift. Two types of shifts will in fact lead to Airy structures:

• simultaneous shifts in each of the d sets of variables;

• simultaneous shifts in all but one set of variables, and the label � of the unshifted
set of variables corresponds to a fixed point r� D 1.

Let us thus choose s� 2 N� [ ¹1º and, for each � such that s� ¤ 1, t� 2 C�, for
each � 2 Œd � and define

�Hi;k WD yT �
�Wi;k � yT

�1; yT WD
Y

�2Œd�W s�¤1

exp
�
�r�t�

J
�
s�

„s�

�
: (2.21)
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We chose to include a normalisation factor r� to simplify later computations. Remem-
ber that conjugating with yT means nothing but shifting

8� 2 Œd �; k 2 Z; J
�

�k
! J

�

�k
� r�t�ık;s�

and its action on the completed Weyl algebra yD„E is well-defined. It turns out that,
with the right choice of parameters, certain subsets of these operators �Hi;k indeed
form an Airy structure.

Theorem 2.11. Let d � 2, r1; : : : ; rd � 1 and s1; : : : ; sd 2 N� [ ¹1º be such that

r1

s1
�
r2

s2
� � � � �

rd

sd
: (2.22)

Let Q1; : : : ;Qd 2 C, t1; : : : ; td�1 2 C�, and td 2 C� if sd ¤1. Assume that

dX
�D1

Q� D 0; t
r�
� ¤ t

r�
� whenever � ¤ � and .r�; s�/ D .r� ; s�/:

Define r D
Pd
�D1 r� and let � 2 Sr be a permutation made of disjoint cycles of

respective lengths .r1; : : : ; rd /. Assume that

• r1 D �1 mod s1;

• s� D 1 for any � … ¹1; dº;

• rd D 1 mod sd ,

and define � ` r to be the descending partition

� D

´
..r 01 C 1/

s1 ; r2; r3; : : : ; rd�1; r
0
d
sd / if rd ¤ 1;

..r 01 C 1/
s1 ; r2; r3; : : : ; rd�1/ if rd D 1;

(2.23)

where we set r 0� WD b
r�
s�
c. Then, the family

�Hi;k; i 2 Œr�; k � 1 � �.i/C ıi;1

is an Airy structure (not necessarily in normal form) on the filtered vector space E
given in (2.18).

We call the case sd D 1 the exceptional case and the other case the standard
case. The proof of the theorem will be presented in Section 3. The exceptional case
d D 2 was already obtained in [9, Theorem 4.16].

Remark 2.12. Note that the conditions imply that s1 2 Œr1 C 1� and if rd > 1, then
sd 2 Œrd � 1�.



G. Borot, R. Kramer, and Y. Schüler 18

The partition � in (2.23) can be depicted as

...

...

...
... . . . ...

...

...

...
...

...

...

...
... . . . ...

...

...

...

...
... . . . ...

...

...

...
...

...

r 0
d

r 0
1
C 1

sd

s1

r 0
1
C 1

�1 D r 01 C 1

�2 D r 01 C 1
:
:
:

�s1 D r 01 C 1

�s1C1 D r2

�s1C2 D r3
:
:
:

�s1Cd�2 D rd�1

�s1Cd�1 D r 0
d

�s1Cd D r 0
d

:
:
:

�s1CsdCd�2 D r
0
d

(2.24)

In the case rd D 1, the last block r 0
d
sd is simply absent. Going through all cases,

one thus finds that every descending partition � ` r is either of the form depicted
in Table 1 or of the form (2.24). This implies that all the subalgebras mentioned in
Theorem 2.8 support two Airy structures: one standard and one exceptional.

Theorem 2.11 guarantees us the existence of a partition function Z solving the
system of differential equations (2.4) associated to the operators �Hi;k but especially
the conditions on the choice of the integers .r�; s�/d�D1 are rather restrictive. It turns
out that if we content ourselves with the existence of a partition function that solves
the differential equations (2.4) only up to corrections in „

1
2 , we can relax the condi-

tions on the input data drastically.

Theorem 2.13. Suppose that .t�/d�D1 satisfy the conditions stated in Theorem 2.11
while .r�; s�/d�D1 are subject to

• s� D1 for at most one � 2 Œd � and in this case r� D 1.

• r� D ˙1 mod s� for all � 2 Œd �.

• For all �1 ¤ �2 with s�i > 2 such that either

r�1 D 1 mod s�1 and r�2 D 1 mod s�2

or
r�1 D �1 mod s�1 and r�2 D �1 mod s�2

one has b
r�1
s�1
c ¤ b

r�2
s�2
c.
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• If there are pairwise distinct �1; �2; �3 2 Œd � with b
r�1
s�1
c D b

r�2
s�2
c D b

r�3
s�3
c, then

there is an m 2 ¹1; 2; 3º for which s�m D 1.

Then the family
�Hi;k; i 2 Œr�; k � 1 � �.i/C ıi;1

satisfies the degree one condition of an Airy structure and there is a unique solution
Z D exp „�1F0 to

8i 2 Œr�; k � 1 � �.i/C ıi;1; Z�1�Hi;kZ � 1 D o.„
1
2 / (2.25)

with F0 D
P
n�3

1
nŠ
F0;n, where F0;n 2 Symn.E�/.

Here, the partition � specifying the mode set is obtained from the concatenation
.�r1;s1 ; : : : ; �rd ;sd /, which is built from the partitions �r�;s� specified in Table 1,
by shifting a box from the first row of �r�C1;s�C1 to the last row of �r�;s� for each
� 2 Œd � 1�. In this construction, we are assuming that we chose a labelling satisfy-
ing (2.22). See also equation (3.21) for an explicit description of this partition. The
proof of Theorem 2.13 can be found in Section 3.4.

2.3.3. Arbitrary dilaton shifts and changes of polarisation. In order to connect
with the theory of the Chekhov–Eynard–Orantin topological recursion, we ought to
be able to conjugate the �Wi;k with more general operators, inducing dilaton shifts
in several of the variables and also making a change in polarisation. This section is
completely parallel to [9, Section 4.1.5].

First, let us consider a general dilaton shift

yT WD exp
� X
�2Œd�
k>0

�
„
�1F0;1

� �
�k

�
C „

� 12F 1
2 ;1

� �
�k

��J�
k

k

�
;

s� WD min
®
k > 0 j F0;1

� �
�k

�
¤ 0

¯
with arbitrary scalars Fh;1

� �
�k

�
for h 2 ¹0; 1

2
º. The seemingly complicated way to

denote these scalars will become natural in Part II, see, e.g., equation (5.14). Effect-
ively, this shifts

J
�

�k
! J

�

�k
C F0;1

� �
�k

�
C „

1
2 F 1

2 ;1

� �
�k

�
and by construction of the completed Weyl algebra, its action on yD„E is well-defined.
It should be interpreted as a deformation of the case where there is a single non-zero
shift

F0;1
� �
�s�

�
D �r�t�: (2.26)

The F 1
2 ;1

give an extra possible deformation as we have allowed half-integer powers
of „.
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Another deformation we would like to consider is the change of polarisation,
given by conjugation with the operator

ŷ D exp
� 1
2„

X
�;�2Œd�
k;l>0

F0;2
� � �
�k �l

�J�
k
J �
l

kl

�
;

where F0;2
� � �
�k �l

�
are arbitrary scalars. Effectively, it shifts

J
�

�k
! J

�

�k
C

X
�2Œd�
l>0

F0;2
� � �
�k �l

�J �
l

l
: (2.27)

Once again, the action on yD„E is well-defined. We want to consider the conjugated
operators

�Hi;k WD ŷ yT �
�Wi;k � yT

�1 ŷ�1: (2.28)

Theorem 2.14. Defining t� by formula (2.26) and with the same conditions for d ,
.r�; s�; t�; Q�/

d
�D1 and the same range for .i; k/ as in Theorem 2.11, the operators

�Hi;k in equation (2.28) form an Airy structure on E.

Remark 2.15. In the same vein, the result of Theorem 2.13 with the exact same
conditions on .r�; s�; t�/d�D1 holds for the operators (2.28) as well.

These results are proved in Section 3 and will be reformulated in terms of spectral
curves in Section 5.

2.3.4. Necessary conditions. It turns out that for a family of differential operators
.�Hi;k/ of the type considered in Section 2.3.2, i.e., F0;1

� �
k

�
D �r�t�ık;�s� , the

implication in Theorem 2.13 can be reversed.

Proposition 2.16. For a family .�Hi;k/k>��.i/Cıi;1 of differential operators as de-
fined in formula (2.21), there exists a solution Z to equation (2.25) if and only if
.r�; s�; t�/

d
�D1 satisfy the conditions in Theorem 2.13.

To prove this proposition, we will exploit a reinterpretation of the results of this
section in terms of spectral curves which will be presented in Section 5. The proof of
this proposition can be found in Section 6.3.

Motivated by Proposition 2.16, it is natural to ask whether the sufficient conditions
stated in Theorem 2.11 for the family of differential operators to be an Airy structure
are also necessary to impose in order to guarantee an all order solution to the asso-
ciated system of differential equations. We will investigate the analogous question
phrased in the setting of spectral curves in Section 6 by analysing the symmetry of the
multidifferentials !0;3, !0;4, and ! 1

2 ;2
which are the counterparts of the free energies

F0;3, F0;4 and F 1
2 ;2

. Doing so we can prove that for generic values of .t�;Q�/d�D1
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most of the conditions stated in Theorem 2.11 are also necessary, and we believe that
a more thorough analysis would actually lead to the conclusion that they are all indeed
necessary.

Proposition 2.17. Let d � 2, r1; : : : ; rd � 1 and s1; : : : ; sd 2 N� [ ¹1º be such
that r1

s1
� � � � �

rd
sd

and choose � as in (2.23). Assume that for all Q1; : : : ; Qd 2 C,
t1; : : : ; td�1 2 C�, and td 2 C� if sd ¤1 such that

dX
�D1

Q� D 0; and t
r�
� ¤ t

r�
� whenever � ¤ � and .r�; s�/ D .r� ; s�/;

the operators .�Hi;k/k>��.i/Cıi;1 defined in formula (2.21) form an Airy structure.
Then necessarily

• r1 D �1 mod s1;

• s� 2 ¹1; 2º for all � … ¹1; dº;

• rd D 1 mod sd .

Moreover, for d > 2, if .r�; s�/ D .r� ; s�/ for � ¤ �, then necessarily s� D s� D 1.

Again we need to postpone the proof of this proposition to Section 6.3 since we
first have to establish the required tools. Besides that, in the course of the proof of The-
orem 2.11 in Section 3, we will see that coprimality of r� and s� and non-resonance
condition for the t�’s (Remark 3.4), as well as non-vanishing of all but maybe one
dilaton shift (Remark 3.16) are obvious necessary conditions to obtain Airy struc-
tures with our method. The assumption

Pd
�D1Q� D 0 may not always be necessary,

and we obtain finer information on this in Proposition 6.7, but we adopted it here to
simplify the statement of Proposition 2.17.

2.3.5. Half-integer or integer powers of „? There are several reasons to allow
half-integer powers of „ in Airy structures instead of just integer power. Our con-
struction admits natural extra degrees of freedom when � has at least two cycles,
namely the parameters Q in Theorem 2.11. This is relevant for applications to open
intersection theory, where we have to allow indices g to be both integer or half-
integer, see Section 8.1 and Theorem 8.7. As it does not lead to any complications,
we write the whole article allowing g 2 1

2
Z�0. The possibility of half-integer genus

was already addressed in [9], which called such Airy structures crosscapped. If all
monomials in Hi only feature integer powers of „ then Fg;n in (2.5) vanishes for
half-integers g. It is therefore straightforward to specialise our results to allow only
integer g, as is more common in topological recursions. Let us however note that
half-integer g already made their appearance in certain other applications of the topo-
logical recursion, such as non-hermitian matrix models [22], enumeration of non-
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orientable discretised surfaces [23], Chern–Simons theory with gauge groups SO.N /
or Sp.2N / [11], etc.

2.4. String, dilaton and homogeneity equations

In this section, we give more explicit forms of some of the lowest order constraints of
the Airy structures found in Theorems 2.10 and 2.11. In the particular case of a trans-
itive twist or its exceptional analogue, we obtain the dilaton equation. With a transitive
twist and s1 D r1 C 1 or its exceptional analogue (i.e., for the Airy structures already
known from [9]), we also get a string equation. The string equation does not occur in
any of the other (new) Airy structures.

Lemma 2.18. Let us consider one of the Airy structures from Theorem 2.10 or Theo-
rem 2.11. For any g; n � 0 such that 2g � 2C .nC 1/ > 0, any �;�1; : : : ; �n 2 Œd �
and p1; : : : ; pn > 0, we have

dX
�D1

t�Fg;nC1
� � �1 ��� �n
s� p1 ��� pn

�
D

nX
mD1

pm

r�m
Fg;n

�
�1 ��� �n
p1 ��� pn

�
C ıg;1ın;0

�r2� � 1
24r�

C
Q2
�

2r�

�
: (2.29)

Proof. We express the constraint �HiD2;kD0 � Z D 0, as it is always part of the Airy
structure. From (2.14)–(2.15) and taking into account J�0 D „

1
2Q� and the evalu-

ations
‰.0/r .q1; q2/ D

1

2
.r2ırjq1ırjq2 � rırjq1Cq2/;

‰.1/r .;/ D �
r.r2 � 1/

24
;

(2.30)

we obtain

�WiD2;kD0 D

dX
�D1

1

r�
W
�
2;0 C

X
�¤�
k>0

W
�

1;�k
W �
1;k C

X
�<�

W
�
1;0W

�
1;0

D

dX
�D1

�X
k>0

r�ır�jk � 1

r�
J
�

�k
J
�

k
C
.r� � 1/Q

2
�„

2r�
�
.r2� � 1/„

24r�

�
C

X
�¤�

�X
k>0

J
�

�r�k
J �r�k C

„Q�Q�

2

�
: (2.31)
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To get �HiD2;kD0, we have to apply the dilaton shifts J��s� ! J
�
�s� � r�t�, which

simply results in adding a term
Pd
�D1 t�J

�
s� to (2.31). Expressing the constraint

8k > 0; �HiD1;k �Z D

� dX
�D1

J
�

r�k

�
�Z D 0;

and using the assumption
Pd
�D1Q� D 0, we see that �HiD2;kD0 � Z D 0 implies

that Z is annihilated by the operator

dX
�D1

°
t�J

�
s�
�

X
k>0

1

r�
J
�

�k
J
�

k
� „

�r2� � 1
24r�

C
Q2
�

2r�

�±
:

By the representation (2.13) of the J s, this yields (2.29) for the coefficients (2.5) of
the partition function.

The partition functions of these Airy structures for � D .1 � � � r/ or .1 � � � r � 1/.r/
(already constructed in [9]) enjoy an extra property of homogeneity, which turn (2.29)
into an analogue of the dilaton equation.

Corollary 2.19. Assume d D 1 and .r1; s1/ D .r; s/ with r D ˙1 mod s. Then, the
coefficients (2.5) of the partition function of the Airy structure from Theorem 2.10
satisfy Fg;nŒp1; : : : ; pn� D 0 whenever

Pn
mD1 pm ¤ s.2g � 2C n/, and the dilaton

equation

Fg;nC1Œs; p1; : : : ; pn� D s.2g � 2C n/Fg;nŒp1; : : : ; pn�C
r21 � 1

24
ıg;1ın;0:

Corollary 2.20. Assume d D 2, r1 D �1 mod s1, .r2; s2/ D .1;1/ and t1 D 1
r1

.
Then, the coefficients of the partition function of the Airy structure described in The-
orem 2.11 (also appearing in [9, Theorem 4.16]) satisfy

Fg;n
�
1 ��� 1
p1 ��� pn

�
D 0

whenever
Pn
mD1 pm ¤ s1.2g � 2C n/, and the dilaton equation

Fg;nC1
�
1 1 ��� 1
s1 p1 ��� pn

�
D s1.2g � 2C n/Fg;n

�
1 ��� 1
p1 ��� pn

�
C

�r21 � 1
24

C
.r1 C 1/Q

2
1

2

�
ıg;1ın;0:

The proof of these two corollaries goes by induction on 2g � 2C n > 0, analysing
the Airy structure constraints.
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Proof of Corollary 2.19. In this case, we only need to consider g 2 Z�0. The Airy
structure is in normal form up to an overall normalisation, and we can decompose for
i 2 .r� and k � 1 � �.i/,

r i�1 �Hi;k D J….i;k/ �
X

`;j2Z�0
2�`C2j�r

„j

`Š

X
q2.Z�/`

C .j /Œ….i; k/jq1; : : : ; q`� WJq1 � � �Jq` W;

where ….i; k/ WD rk C s.i � 1/. Setting F0;2Œp1; p2� WD jp1jıp1Cp2;0, [9, Corol-
lary 2.16] gives the following formula for the coefficients of the partition function:

Fg;nŒp1; : : : ; pn� D
X

`;j2Z�0
2�`C2j�r

q2.Z�/`

C .j /Œp1jq1; : : : ; q`�

`Š

X
�`Œ`�

00X
�`�.n�
hW�!Z�0

`CjC
P
�2�.h��1/Dg

Y
�2�

Fh�;j�jCj��jŒq�;p�� �: (2.32)

Here, � ` Œ`�means that � is a set of non-empty subsets of Œ`� which are pairwise dis-
joint and whose union is `, and for � 2 � we denote q� WD .qm/m2�. Then, � `� .n�
is a family of (possibly empty) pairwise disjoint subsets �� of .n� indexed by � 2 �,
whose union is .n�. The double prime over the summation means that the terms
involving F0;1Œqm� or F0;2Œqm; qm0 � are excluded from the sum. We note that the sum-
mation condition is equivalent to

2g � 2C nC .1 � ` � 2j / D
X
�2�

.2h� � 2C j�j C j��j/:

Since ` C 2j � 2, this is indeed a recursion on 2g � 2 C n � 0 to compute Fg;n
starting from the value of F0;2.

The coefficient F0;2 obviously satisfies the homogeneity property. Assume the
Fg0;n0 for 0� 2g0 � 2C n0 < 2g � 2C n satisfy homogeneity. So, the summands that
can contribute to (2.32) are such that

s.2g � 2C nC .1 � ` � 2j // D
X
�2�

s.2h� � 2C j�j C j��j/

D

X̀
lD1

ql C

nX
mD2

pm: (2.33)

Writing p1D….i;k/ and applying the dilaton shift J�s! J�s � 1 to (2.15), we know
that C .j /Œp1jq� is a linear combination of terms inside which

P`
lD1 ql � s`

0 D rk,
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where `C `0 D i � 2j . Hence

X̀
lD1

ql D p1 C s.1 � 2j � `/: (2.34)

Together with (2.33), this proves homogeneity of Fg;n. By induction, homogeneity is
established for all g, n.

We then apply Lemma 2.18. In our case, there is a single �, t� D 1
r�

andQ� D 0.
Using homogeneity to simplify the right-hand side of (2.29), we obtain

Fg;nC1Œs; p1; : : : ; pn� D s.2g � 2C n/Fg;nŒp1; : : : ; pn�C ıg;0ın;1
r2 � 1

24
:

Proof of Corollary 2.20. The argument is similar and we only point the minor differ-
ences that must be taken into consideration. Although half-integer g and j are now
allowed, this does not spoil the sum constraints appearing in the recursive formula
for Fg;n and which were used in the argument. According to (2.14) and (2.21), we
have for i 2 .r1 C 1�

�Hi;k D r
�.i�1/
1

�
W 1
i;k C

X
k02Z

r1W
1
i�1;k0J

2
k�1�k0

�ˇ̌̌
J 1�s1!J

1
�s1
�1
; (2.35)

where by convention W 1
r1C1;k

D 0. The analysis of the previous proof applies to the
term W 1

i;k
. Due to the equation �H1;k �Z D .J 1r1k C J

2
k
/ D 0, we can obtain a recur-

sion in normal form involving only Fg;n
�
1 ��� 1
� ��� �

�
by substituting

J 2k2 !

8̂̂<̂
:̂

0 if k2 < 0;

�„
1
2Q1 if k2 D 0;

�J 1
r1k2

if k2 > 0

(2.36)

in (2.35). This converts W 1
i�1;k0

J 2
k�k0

into �W 1
i�1;k0

J 1
r1.k�k0/

or 0, and makes it con-
tribute to a coefficient C .j /Œp1jq1; : : : ; q`� where now q` D r1.k � k

0/ and� `�1X
lD1

ql

�
� s1`

0
D r1k

0

with .` � 1/C `0 D i � 1 � 2j . Hence

X̀
lD1

ql D r1k � s1`
0
D p1 C s1.1 � 2j � `/;

which is the same as (2.34), and this is all what we need to repeat the previous proof
and establish homogeneity.
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We then specialise Lemma 2.18 to our case, that is, t1 D 1
r1

and t2 D 0, while
Q2 D�Q1. Setting �i D 1 for all i 2 Œn� in (2.29) and using homogeneity to simplify
the right-hand side, we deduce

Fg;nC1
�
1 1 ��� 1
s1 p1 ��� pn

�
D s1.2g � 2C n/Fg;n

�
1 ��� 1
p1 ��� pn

�
C

�r21 � 1
24

C
.r1 C 1/Q

2
1

2

�
ıg;1ın;1:

For the two above cases, we also have a string equation when s1 D r1 C 1.

Lemma 2.21. Assume d D 1 and .r1; s1/ D .r; r C 1/. Then, the coefficients of the
partition function of the Airy structure described in Theorem 2.10 satisfy

Fg;1CnŒ1; p1; : : : ; pn� D

nX
mD1

pmFg;nŒp1; : : : ; pm�1; pm � r; pmC1; : : : ; pn�

C ıg;0ın;2ıp1Cp2;r :

Lemma 2.22. Assume d D 2, s1D r1C 1 and .r2; s2/D .1;1/. Then, the coefficients
of the partition function of the Airy structure described in Theorem 2.11 satisfy

Fg;1Cn
�
1 1 ��� 1
1 p1 ::: pn

�
D

nX
mD1

pmFg;n
�
1 ��� 1 1 1 ��� 1
p1 ��� pm�1 pm�r pmC1 ��� pn

�
C ıg;0ın;2ıp1Cp2;r C ıg; 12

ın;1ıp1;rQ1:

Proof. The string equation corresponds to the operator HiD2;kD�1, which is only
present in the Airy structure for d D 1 when s D r C 1, and for d D 2 if s1 D r1C 1.
The proof of the above relations is then similar to the one in Lemma 2.18.

3. Proof of Theorems 2.11, 2.14, and 2.13

The first part of this section is devoted to the proof of Theorems 2.11 and 2.14.
These theorems state that certain collections of operators .�Hi;k/.i;k/2I defined in
equations (2.21) and (2.28) are Airy structures. In fact, we only prove the second the-
orem, and note that the first is a special case. We first prove this in the standard case,
proceeding as follows:

(I) The operators of an Airy structure must be of the form J
�
a C O.2/. It is

thus necessary to first identify the degree zero and degree one term of �Hi;k
in order to check this condition.
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(II) In general, one will find that

�Hi;k D ci;k C
X
�2Œd�
a2Z

M.i;k/;.�;a/ J
�
a CO.2/ (3.1)

for some matrix M and constants ci;k . This means that for generic i , k, we
may expect terms proportional to J��a D a x

�
a . We will thus construct an

index set I � Œr� � Z such that for all .i; k/ 2 I , we have

ci;k D 0 and M.i;k/;.�;a/ D 0 if a � 0:

(III) Nevertheless, even restricted to I the degree one term (3.1) is in general
a linear combination of many J�a s for a > 0. In order to bring the operators
into the normal form of an Airy structure J�a C O.2/ where each .�; a/
appears in a unique operator, we will show that the matrix M restricted
to I is invertible under certain constraints on the dilaton shifts. One can
then obtain the operators

� zH�
a WD

X
.i;k/2I

.M�1/.�;a/;.i;k/
�Hi;k D „@x�a CO.2/;

which are of the desired form.

(IV) The modes . zH�
a /.�2Œd�; a>0/ satisfy the subalgebra condition if and only if

the .�Wi;k/.i;k/2I do. The latter is satisfied when I is induced by a des-
cending partition of r as specified in Theorem 2.8. This criterion thus
allows for an easy check of whether the mode set constructed in (III) satis-
fies the subalgebra condition (2.2) of a higher quantum Airy structure.

Together the results of (III) and (IV) will directly imply Theorem 2.14 and hence
Theorem 2.11 in the standard case. The steps (I) to (III) will be carried out in Sec-
tion 3.1, and step (IV) is performed in Section 3.2. In Section 3.3, we treat in less
detail the exceptional case, as it resembles the standard case in many ways.

The purpose of Section 3.4 is to prove Theorem 2.13 that addresses the question
in which case the operators �Hi;k admit a partition function solving the associated
system of differential equations to leading order in „

1
2 . We will start in Section 3.4.1

by deriving sufficient conditions for this question to have a positive answer for general
families of differential operators satisfying the degree one condition. Then we apply
this result to our case at hand and finally prove Theorem 2.13 in Section 3.4.2.

First, let us recall some notation. Let � 2 Sr be a permutation with d cycles of
respective length r� such that r D r1C � � � C rd . We can then define the dilaton shifted
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modes

�Hi;k WD yT �
�Wi;k � yT

�1; yT WD exp
� X
�2Œd�
k>0

„
�1F0;1

� �
�k

�J�
k

k

�
;

s� WD min
®
k > 0 j F0;1

� �
�k

�
¤ 0

¯
;

which in the following are the central objects of study. Here �Wi;k are the � -twisted
modes from Lemma 2.9. Compared to equation (2.28), we do not introduce the coef-
ficients F 1

2 ;1
and F0;2 here yet, as it turns out these are not important for most of the

proof. As in equation (2.10), it will be useful to gather these in a generating function,

�Hi .zx/ D
X
k2Z

�Hi;k

zxk

�dzx
zx

�i
D yT � �Wi .zx/ � yT

�1:

We will also recall from equation (2.12)

J�;a.zx/ WD
X

k2 ar�CZ

J
�

r�k

dzx
zxkC1

and define J�;tot.zx/ D
Pr��1

aD0 J
�;a.zx/. To treat these currents more uniformly, we

introduce zC D
Fd
�D1
zC�, the union of d copies of a formal neighbourhood zC� of

the origin in the complex plane. We use the notation . �z / for the coordinate in the zC�.
We define a function zxW zC !C by zx. �z /D zr� . See Part II for more on this viewpoint.
We then define a unified current

J . �z / WD
J�;tot.zx.z//

r�
D

X
k2Z

J
�

k

dzx
r�zxk=r�C1

D

X
k2Z

J
�

k

dz
zkC1

:

The factor of r� in the denominator is a convention making (3.2) simpler. We some-
times omit � from the notation and simply denote z 2 zC . With these notations, we
see that the dilaton shift induces

J.z/! J.z/C !0;1.z/; !0;1.
�
z / WD

X
k>0

F0;1
� �
�k

�
zk�1dz:

We also use the shorthand notation t� D � 1
r�
F0;1

� �
�s�

�
for the leading coefficient.

3.1. The degree one condition

In this subsection and the next one, we assume that all s� are finite. Let us begin by
identifying the degree one component of �Hi . Let �1 be the projection to degree one.
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Lemma 3.1. For any i 2 Œr�,

�1.
�Hi .�// D

X
z2zx�1.�/

X
Z�zx�1.�/n¹zº
jZjDi�1

J.z/
Y
z02Z

!0;1.z
0/: (3.2)

So we have
�1.

�Hi;k/ D
X
�2Œd�
a2Z

M.i;k/;.�;a/J
�
a (3.3)

with a matrix M.i;k/;.�;a/ having the property that, for each .�; a/, there exists K�;a
such that for any i 2 Œr� and k � Ka;� we have M.i;k/;.�;a/ D 0.

Note that the right-hand side is a symmetric function in the elements of zx�1.�/,
and therefore it contains only integral powers of � .

Proof. From equation (2.17), we see that �Wi .�/ is a linear combination of currents

„

P
� j�

Y
�2M

W

i�Y
lD2j�C1

J�;a
�

l .�/ W:

After the dilaton shift, these will only contribute to the degree one component of
�Hi .�/ if j� D 0 for all � 2M . We have

�1.
�Wi .�// D �1

� X
M�Œd�

X
i�2Œr��; �2MP

� i�Di

Y
�2M

1

r
i�
�

� X
a
�
1
;:::;a

�

i�
2Œ0;r�/

‰.0/r� .a
�
1 ; : : : ; a

�
i�
/

� W

Y
�2M

i�Y
lD1

J�;a
�

l .�/ W

��
; (3.4)

and therefore on the right-hand side we need to take the contribution of the shifts in
all factors but one. Definition (2.16) of the ‰.0/ is nothing but a sum over subsets of
Galois conjugates of the function zx, so we obtain

X
a
�
1
;:::;a

�

i�
2Œ0;r�/

‰.0/r� .a
�
1 ; : : : ; a

�
i�
/ W

i�Y
lD1

J�;a
�

l .�/ W D
X

Z�zx�1.�/\ zC�
jZjDi�

W

Y
z02Z

J
� �
z0

�
W:

The sum over M � Œd � in (3.4) “globalises” this sum of subsets from one compon-
ent zC� to all of zC . As stated before, the degree one projection extracts the dilaton
shifts of all but one (the choice of z) of these factors, which proves (3.2). We obtain
the matrix M by expanding this equation in � and collecting the contributions of
J
�
a . The vanishing property comes from the fact that !0;1 contains only nonnegative

powers of z.



G. Borot, R. Kramer, and Y. Schüler 30

We will restrict the range of indices on both sides and show that the matrix M

is invertible in order to bring the differential operators into the normal form of an
Airy structure. But first, we would like to see that this matrix is invertible without
restricting it to any subspace yet. Define

�H.�; u/ WD

rX
iD1

�Hi .�/ u
r�i :

Then

�1.
�H.�; u// D

rX
iD1

X
z2zx�1.�/

X
Z�zx�1.�/n¹zº
jZjDi�1

J.z/
Y
z02Z

!0;1.z
0/ur�i

D

X
z2zx�1.�/

J.z/
Y

z02zx�1.�/n¹zº

.uC !0;1.z
0//: (3.5)

We are looking for the inverse to this operation. Remember from (2.26) that for any
� 2 Œd � we write t�´ � 1

r�
F0;1

� �
�s�

�
.

Lemma 3.2. Assume gcd.r�; s�/ D 1 for all � 2 Œd � and t r�� ¤ t
r�
� for any distinct

�, � such that r�
s�
D

r�
s�

. Then the currents can be recovered from �1.
�H.�; u// as

follows:

J.z/ D Res
uD�!0;1.z/

�1.
�H.zx.z/; u// duQ

z02zx�1.zx.z//.uC !0;1.z
0//
: (3.6)

Proof. If we plug equation (3.5) back in equation (3.6), we get

Res
uD�!0;1.z/

X
�2zx�1.zx.z//

J.�/
Y

� 02zx�1.zx.z//n¹�º

.uC !0;1.�
0//

�

Y
z02zx�1.zx.z//

.uC !0;1.z
0//�1du D Res

uD�!0;1.z/

X
�2zx�1.zx.z//

J.�/ du
uC !0;1.�/

:

Because we took z in a small neighbourhood of zero (but of course not zero itself), the
conditions of the lemma ensure that all !0;1.�/ for � in the same fiber have different
values. Therefore, the only contribution to the residue comes from � D z.

Remark 3.3. The other inverse relationship,

�1.
�H.�; u// D

X
z2zx�1.�/

Y
z02zx�1.�/n¹zº

.uC !0;1.z
0//

� Res
u0D�!0;1.z/

�1.
�H.zx.z/; u0// du0Q

z02zx�1.zx.z//.u
0 C !0;1.z0//

;

follows immediately from Lagrange interpolation since �1.�H.zx.z/; u// is polyno-
mial in u.
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Remark 3.4. For Lemma 3.2 and Remark 3.3 to work, all we really need is that !0;1
takes distinct values on all elements of the fiber of zx near the ramification point � D 0,
i.e., the map .zx; !0;1/W zC ! T �P1 is an embedding into a punctured neighbourhood
of the ramification point. The conditions gcd.r�; s�/ D 1 and t r�� ¤ t

r�
� for � ¤ �

such that r�
s�
D

r�
s�

ensure this. Though in general not necessary at this point, it will
become crucial to impose these stricter conditions in Lemma 3.11. See Remark 3.12
for this.

In the undeformed case, i.e., if !0;1 is monomial, this is in fact necessary as well
as sufficient. Indeed, suppose we are in the setting of Theorem 2.11 and there is a �
for which gcd.r�; s�/ D d� > 1, let z 2 zC�, and let # be a primitive r�-th root of
unity. Then

x.z/ D x.#r�=d�z/ and !0;1.z/ D !0;1.#
r�=d�z/:

So in equation (3.5), the dependence on J�� is given by

Y
z02zx�1.�/

.uC !0;1.z
0//

r�X
iD1

J
� �

#iz

�
uC !0;1.# iz/

D

Y
z02zx�1.�/

.uC !0;1.z
0//

r�=d�X
iD1

Pd�
jD1 J

� �

#iCjr�=d�z

�
uC !0;1.# iz/

:

Performing the sum over j , we see that �1.�H.�; u// only depends on J�a for d� j a.
Therefore, it is impossible to retrieve all J�a from �1.

�H/.
In the case � ¤ � such that r�

s�
D

r�
s�

and t r�� D t
r�
� , the situation is similar. First

note that by redefining the local coordinate on zC�, we can actually assume t� D t� .
Writing the local coordinates as z 2 zC� and z0 2 zC� , we then have !0;1.# iz/ D
!0;1.#

iz0/ for all i 2 Œr��. By the same argument as above, �1.H/ then depends
on J�a and J �

b
only in the combination J�a C J �a , so again we can never retrieve the

individual J�a and J �a .

Since the !0;1 are power series with exponents bounded below (by s� on com-
ponent zC�), we can see that for any i , the set of k such that �Hi;k gets a contribution
from J

�
a with a� 0 in equation (3.2) is bounded from above. Therefore, the following

definition makes sense.

Definition 3.5. For i 2 Œr�, we define k>min.i/ to be the smallest K such that for all
k � K, �1.�Hi;k/ given by equation (3.2) lies in the linear span of J�a with � 2 Œd �
and a > 0 solely.

Analogously, for i 2 Œr� we choose k�min.i/ to be the lowest bound for which
�1.

�Hi;k/ with k � k�min.i/ only features J�a with � 2 Œd � and a � 0.
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It turns out that k>min.i/ can be approximated as follows.

Lemma 3.6. If r1
s1
� � � � �

rd
sd

and gcd.r�; s�/D 1 for all � 2 Œd �, we have k>min.i/ �

d>r;s.i/, where

d>r;s.i/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�b
s1.i�1/
r1
c C ıi;1; 1 � i � r1;

�b
s2.i�r1�1/

r2
c � s1 C ıi;1Cr1 ; r1 < i � r Œ2�;

:::
:::

�b
sd .i�rŒd�1��1/

rd
c � sŒd�1� C ıi;1CrŒ��1� ; r Œd�1� < i � r;

(3.7)

where for a subset M � Œd � we denoted rM WD
P
�2M r� and sM WD

P
�2M s�.

Proof. Recall that k is the exponent in

�1.
�Hi;k/

�k

�d�
�

�i
: (3.8)

As we also get i factors of d�
�

on the right-hand side of equation (3.2) (one from J

and i � 1 from the !0;1), we will concentrate on the remaining powers of �.
From Lemma 3.1, we see that in order to determine an upper bound kmax 2 Q for

the exponents k in (3.8) for which we get a non-vanishing contribution from J
�
a with

a � 0 it suffices to inspect a D 0 and to take only the leading order of all !0;1s into
account. More specifically, to make k in (3.8) as large as possible, we need to choose
the !0;1s efficiently: an !0;1 on branch � has leading order .z0/s� dz0

z0
D �

s�
r�

d�
�

. So, to
minimise the power of �, we need to take s�

r�
minimal, i.e., r�

s�
maximal, i.e., � minimal.

From this it follows that the maximal k such that J �a , a � 0 can contribute is found
by first taking all r1 factors !0;1 with arguments on component � D 1, then the r2 on
component � D 2, up until we get to i � 1 factors.

If i 2 Œr1�, we get �kmax D
s1
r1
.i � 1/ from this, while for i 2 .r Œ��1�; r Œ���, we

similarly get

�kmax D .i � r Œ��1� � 1/
s�

r�
C

��1X
�D1

s�

r�
r� :

Of course, it might still happen that the coefficient of the power ��kmax vanishes due
to cancelling contributions of different combinations of !0;1s. However, in any case
kmax 2 Q is an upper bound for k 2 Q for which J �a with a � 0 can still contribute.
Therefore,

k>min.i/ � min
°
K 2 Z

ˇ̌̌
K > �

�
sŒ��1� C .i � r Œ��1� � 1/

s�

r�

�±
; (3.9)
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where i 2 .r Œ��1�; r Œ���. Finally, let us argue that the right-hand side of the above
equation is nothing but d>r;s.i/ as defined in (3.7). If i 2 .r Œ��1� C 1; r Œ���, this is
clearly true, as then .i � r Œ��1�/

s�
r�
… Z, and taking the integral part implies strict

inequality. If i D r Œ��1� C 1, we need to add 1 to obtain strict inequality, explaining
the Kronecker delta in (3.7).

Remark 3.7. For generic !0;1, i.e., generic values for dilaton shifts, we even have
k>min.i/ D d>r;s.i/ for all i . Indeed, it should be clear from the proceeding discussion
that the case k>min.i/ < d>r;s.i/ can only occur if the leading order inspected in the proof
of Lemma 3.6 vanishes. This can only happen if ��kmax gets contributions from several
combinations of !0;1s, which however is only possible if in the case i 2 .r Œ��1�;r Œ���
we have a � ¤ � with r�

s�
D

r�
s�

. This can be compared in Part II to the results of
Lemma 5.4 and Proposition 5.13.

The lower bound k�min can be approximated in the same way.

Lemma 3.8. If r1
s1
� � � � �

rd
sd

and gcd.r�; s�/ D 1 for all � 2 Œd �, then we have
k
�

min.i/ � d�r;s.i/, where

d�r;s.i/ WD �
js�.i � r Œ��1� � 1/

r�

k
� sŒ��1�; i 2 .r Œ��1�; r Œ���: (3.10)

Proof. By the same arguments as in the proof of Lemma 3.6, we have

k
�

min.i/�min
°
K 2 Z

ˇ̌̌
K � �

�
sŒ��1�C .i � r Œ��1� � 1/

s�

r�

�±
; i 2 .r Œ��1�;r Œ���:

The right-hand side of this equation is of course nothing but (3.10).

From now on, we will always assume that r1
s1
� � � � �

rd
sd

if not stated otherwise.
The modes selected with the help of d>r;s.i/ via

�Hi;k; i 2 Œr�; k � d>r;s.i/

shall be shown to be an Airy structure for certain .r�; s�/d�D1. For future reference,
let us therefore define the following index set.

Definition 3.9. We define the index set I>r;s to be

I>r;s WD ¹.i; k/ 2 Œr� � Z j k � d>r;s.i/º (3.11)

with d>r;s.i/ as in (3.7). Analogously, we set I�r;s WD ¹.i; k/ 2 Œr� � Z j k � d�r;s.i/º.

With the fact that k>min.i/ � d>r;s.i/ and equation (3.7), we have two different char-
acterisations of I>r;s. The first property tells us that for .i; k/ 2 I>r;s the degree one
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projection of �Hi;k is a linear combination of J�a with a > 0 only while the charac-
terisation in (3.7) will be important later in order to check whether the modes satisfy
the subalgebra condition. In the following, we will need yet another characterisation
of I>r;s.

Lemma 3.10. For .i; k/ 2 Œr� �Z, we have .i; k/ … I>r;s if and only if for all � 2 Œd �,

r�.k C sŒ��1�/C s�.i � r Œ��1� � 1/ � 0: (3.12)

Proof. First, let us take .i;k/ 2 Œr��Z for which equation (3.12) holds for all� 2 Œd �.
Then especially it holds for �2 Œd � chosen so that i 2 .r Œ��1�;r Œ���. In this case, (3.12)
can be rewritten as

k � �
s�

r�
.i � r Œ��1� � 1/ � sŒ��1�; (3.13)

which in comparison with (3.9) means nothing but k < d>r;s.i/ and thus .i; k/ … I>r;s.
For the other direction, suppose .i; k/ … I>r;s. Then again if we choose � so that i 2

.r Œ��1�;r Œ���, the statement that k < d>r;s.i/ translates into (3.13). Hence, for arbitrary
� 2 Œd � we can use the inequality in order to obtain

r�.k C sŒ��1�/C s�.i � r Œ��1� � 1/

�

�
s� �

r�s�

r�

�
.i � r Œ��1� � 1/C s�.r Œ��1� � r Œ��1�/ � r�.sŒ��1� � sŒ��1�/:

Now suppose � � �. Then by assumption, s� �
r�s�
r�
� 0 and therefore

r�.k C sŒ��1�/C s�.i � r Œ��1� � 1/ � s�r Œ�;�/ � r�sŒ�;�/ � 0;

where the last inequality follows from our assumption that r�
s�
�
r�
s�

for all � � �. The
case � > � can be treated similarly. Note that in this case s� �

r�s�
r�
� 0 and thus

r�.k C sŒ��1�/C s�.i � r Œ��1� � 1/ �
�
s� �

r�s�

r�

�
r� C r�sŒ�;�/ � s�r Œ�;�/ � 0;

where the last inequality follows from our assumption that r�
s�
�

r�
s�

for all � � �.

Remember that we defined the matrix M.i;k/;.�;a/ to be the collection of coeffi-
cients

�1.
�Hi;k/ D

X
�2Œd�; a2Z

M.i;k/;.�;a/J
�
a

of the projection to degree one. It is given abstractly in Lemma 3.1. So far we found
out that M admits a two-sided inverse, and moreover we characterised those modes
featuring only derivatives in degree one. The next step is now to combine both res-
ults in order to bring the operators .�Hi;k/.i;k/2I>r;s into the normal form of an Airy
structure.
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Lemma 3.11. Assume gcd.r�; s�/ D 1 for all � 2 Œd � and t r�� ¤ t
r�
� for any distinct

�, � with r�
s�
D

r�
s�

. Then, there exist matrices N.�;a/;.i;k/ and M.i;k/;.�;a/ indexed by
.�; a/ 2 Œd � � Z>0 and .i; k/ 2 I>r;s (see (3.11)) obeying the vanishing properties in
Definition 2.3, that are inverse to each other, and such that

� zH�;a D
X

.i;k/2I>r;s

N.�;a/;.i;k/
�Hi;k; .�; a/ 2 Œd � � Z>0

satisfy the degree one condition.

Proof. From Lemma 3.2 and Remark 3.3, we know that the matrix M encoding the
coefficients of the degree one projection of the modes �Hi;k admits a two-sided in-
verse if we keep the full range of indices .i; k/ 2 Œr� � Z and .�; a/ 2 Œd � � Z.
However, we actually need such a relation between the semi-infinite column vectors

H� WD .�1.�Hi;k//.i;k/2I>r;s and J� WD .J�a /.�;a/2Œd��Z>0 :

For this, let us also introduce the semi-infinite column vectors

HC WD .�1.�Hi;k//.i;k/…I>r;s and JC WD .J�a /.�;a/2Œd��Z�0 ;

and the infinite column vectors

H WD
�

H�
HC

�
and J WD

�
J�
JC

�
:

We can then write equation (3.5) symbolically as HDM � J. The vanishing properties
of the matrix M guarantee that this product is well-defined (i.e., the evaluation of each
entry involves only finite sums). By definition of Ir;s, this splits as 

H�
HC

!
D

 
M�� 0

M�C MCC

! 
J�
JC

!
:

Writing N for the inverse of M, the relation M �N D id implies that M�� �N�� D

id� (with obvious notation). As these are semi-infinite matrices, we cannot conclude
yet that N�� �M��D id�. However, using the same arguments as above to prove this,
it is sufficient to show that NC� D 0. For this let us inspect N further. According to
Lemma 3.2, seen N as a linear operator we have

N W ‡.�; u/ 7! Res
uD�!0;1.z/

‡.zx.z/; u/ duQ
z02zx�1.zx.z//.uC !0;1.z

0//
: (3.14)

By a straightforward calculation, we see that if z 2 zC� and z0 2 zC� , then as z ! 0,

!0;1.z
0/ � !0;1.z/ D

´
O.zs��1dz/; � � �;

O.z
r�s�
r�
�1dz/; � < �:
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More precisely, a thorough analysis analogous to the one in Lemma 5.4 shows thatY
z02zx�1.zx.z//n¹zº

.�!0;1.z/C !0;1.z
0// D t�z

u�.dz/r�1 CO.zu�C1.dz/r�1/ (3.15)

for some non-vanishing t�, where

u� WD � r � s� C
X
���

r�s� C
X
�>�

r�s� C 1:

Thus, considering the term related to �Hi;k , we see after some elementary addition of
exponents that

N
�
ur�i

1

�k

�d�
�

�i�
2 O

�
z�r�.kCsŒ��1�/�s�.i�rŒ��1��1/

�dz
z

��
:

Since by Lemma 3.10, for .i; k/ … I>r;s we have

r�.k C sŒ��1�/C s�.i � r Œ��1� � 1/ � 0;

this transformation maps the vector HC to JC and therefore indeed NC�D 0 implying
the sought-after relation N�� �M�� D id�.

From (3.14), one can check the desired vanishing property for the entries of N��,
and therefore applying the matrix N�� to the semi-infinite column vector with entries

�1.
�Hi;k/ D

X
�2Œd�
a>0

M.i;k/;.�;a/„@x�a ; .i; k/ 2 I>r;s;

is well-defined and gives the semi-infinite column vector J�.
To completely prove the degree one property, we need to check that for any

.i; k/ 2 I>r;s, the degree zero component of �Hi;k is vanishing. Following the proof
of Lemma 3.1, one finds that the projection to degree zero of �Hi;k for arbitrary i
and k is

�0.
�Hi .�// D

X
Z�zx�1.�/
jZjDi

Y
z2Z

!0;1.z/: (3.16)

Similarly to Lemma 3.6, we then see that in order to get a non-vanishing contribution
to �0.�Hi;k/, we need

k � �
�
sŒ��1� C .i � r Œ��1�/

s�

r�

�
;

where the difference with that lemma is the substitution of i � 1 by i . By the proof of
that lemma,

d>r;s.i/ > �
�
sŒ��1� C .i � r Œ��1� � 1/

s�

r�

�
> �

�
sŒ��1� C .i � r Œ��1�/

s�

r�

�
: (3.17)

Hence �0.�Hi;k/ D 0 for .i; k/ 2 I>r;s, and this concludes the proof.
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Remark 3.12. In comparison with Lemma 5.4, we can see that the assumptions
gcd.r�; s�/ D 1 for all � 2 Œd � and t r�� ¤ t

r�
� for any distinct �, � with r�

s�
D

r�
s�

are crucial for the vanishing of NC� as they ensure that (3.15) starts with the correct
order in z. So, in the case these conditions are not satisfied, we cannot expect the dif-
ferential operators to be an Airy structure in general. A case in which this is indeed
failing is provided by the example

x. �z / D
z2

2
; y

�
1
z

�
D
1

z
; y

�
2
z

�
D
1

z
C z

with !0;1 D ydx presented in the same way as in Section 6. If we tried to com-
pute the free energies associated to this input data recursively, we would find a non-
symmetric F0;3. Indeed, using a correspondence which will be established in Sec-
tion 4, we can associate a multidifferential !0;3 to F0;3 which can be computed
explicitly and shown to be non-symmetric as

!0;3
�
2 1 1
z1 z2 z3

�
D 0 ¤ �

dz1dz2dz3
z21z

2
2z
2
3

D !0;3
�
1 1 2
z3 z2 z1

�
:

Hence, the differential operators associated with the above input data cannot form an
Airy structure.

3.2. The subalgebra condition

Having proven the degree one condition for the modes

�Hi;k; .i; k/ 2 I>r;s

with index set I>r;s as defined in (3.11), we need to check whether these modes form
a graded Lie subalgebra as required for Airy structures. In order to do so, we use
Theorem 2.8 stating that if I is induced by a descending partition, then .�Hi;k/.i;k/2I
generate a graded Lie subalgebra. By this we mean that there exist �1 � � � � � �` withP`
jD1 �j D r such that I D I�, where

I� WD ¹.i; k/ 2 Œr� � Z j 8i 2 Œr�; �.i/C k > 0º;

and we set

�.i/ WD min
²
m

ˇ̌̌̌ mX
jD1

�j � i

³
:

In the case at hand, we want to check whether I>r;s [ ¹.1; 0/º is induced by a descend-
ing partition. We will later then exclude �H1;0 from the associated mode set by setting
this mode to zero. Explicitly, this means that we want to classify the cases in which
there exists a descending partition � ` r such that �.i/ D 1 � d>r;s.i/C ıi;1. Writing
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i D i 0 C r Œ��1� for i 0 2 Œr� � again assuming r1
s1
� � � � �

rd
sd

, we can write out d>r;s.i/

using Lemma 3.6 and obtain

�.i/ D 1C
js�.i 0 � 1/

r�

k
C sŒ��1� � ıi 0;1ı�>1: (3.18)

The case d D 1was (up to a small addition we will need later) studied in [9], resulting
in the following correspondence.

Lemma 3.13. Let r; s � 1 be coprime. Then there exists a descending partition � D
.�1; : : : ; �`/ such that

�.i 0/ D 1C
js.i 0 � 1/

r

k
; i 0 2 Œr� (3.19)

if and only if r D ˙1 mod s. In this case, � is given by

�1 D � � � D �r 00 D r
0
C 1; �r 00C1 D � � � D �` D r

0; ` D s � ıs;rC1; (3.20)

writing r D r 0s C r 00 with r 00 2 ¹1; s � 1º. In particular, we have � D .1/ for r D 1,
� D .r/ for s D 1, and � D .1r/ for s D r C 1.

Proof. In the case r D 1, the statement trivially holds and is independent of the choice
of s. So let r > 1 now. The case where s 2 Œr C 1� was already discussed in [9,
Proposition B.1] and leads to the above classification of cases in which we can find
a descending partition satisfying (3.19).

So what is left to prove is that in the case s > r C 1, there is no partition � for
which (3.19) holds. Suppose the opposite is true. Then since �.i 0C 1/��.i 0/2 ¹0;1º,
it follows that jsi 0

r

k
�

js.i 0 � 1/
r

k
� 1

for all i 0 2 Œr � 1�. Now writing s D s0r C s00 for some s00 2 Œ0; r � 1�, we see that the
above is equivalent to

s0 C
js00i 0
r

k
�

js00.i 0 � 1/
r

k
� 1:

This inequality can only be satisfied if s0 D 1, andjs00i 0
r

k
�

js00.i 0 � 1/
r

k
� 0

for all i 0 2 Œr � 1�. Remember that we assumed s > r C 1which implies s00 > 1. How-
ever, in this case we can always find an i 0 2 Œr � 1� for which b s

00i 0

r
c � b

s00.i 0�1/
r
c D 1,

which is a contradiction.
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For later reference, if r and s satisfy the properties of Lemma 3.13, let us write
�r;s for the associated partition � and `r;s WD s � ıs;rC1 for its length.

To extend the statement of the last lemma to the case d > 1, we need to make
a few observations. First, notice that for a partition � ` r we have

�.i C 1/ � �.i/ D 1 if and only if i D

mX
jD1

�j

for some m > 0 and �.i C 1/ � �.i/ D 0 otherwise. Therefore, a descending parti-
tion � satisfying (3.18) encodes the length of the intervals for which the right-hand
side of the equation stays constant. Now notice that for i 2 .r Œ��1�C 1;r Œ��� the right-
hand side of (3.18) is exactly of the form as in (3.19) up to a constant shift, i.e.,

�.i/ D �r� ;s� .i 0/C sŒ��1�

for i D i 0 C r Œ��1� with i 0 2 .1; r� �. Hence for � to be descending, r� and s� need to
satisfy the properties from Lemma 3.13. Moreover, if we analyse the jumping beha-
viour of �.i/ at the transition i 2 Œr Œ��1�; r Œ��1� C 2�, we obtain a full description
of �. For this observe that because of the Kronecker delta

�.r Œ��1� C 1/ � �.r Œ��1�/ D 0;

�.r Œ��1� C 2/ � �.r Œ��1� C 1/ D 1

assuming r� > 1 in the second line. Therefore, a partition � describing the right-hand
side of (3.18) must be of the form

� D

0BBBBBBB@
�
r1;s1
1 �

r1;s1
2 : : : �

r1;s1
`r1;s1�1

�
r1;s1
`r1;s1

C 1

�
r2;s2
1 � 1 �

r2;s2
2 : : : �

r2;s2
`r2;s2�1

�
r2;s2
`r2;s2

C 1

�
r3;s3
1 � 1 �

r3;s3
2 : : : �

r3;s3
`r3;s3�1

�
r3;s3
`r3;s3

C 1
:::

�
rd ;sd
1 � 1 �

rd ;sd
2 : : : �

rd ;sd
`rd ;sd�1

�
rd ;sd
`rd ;sd

1CCCCCCCA ; (3.21)

where in the case s� D 1 the �-th line

.: : : ; �
r�;s�
1 � 1; �

r�;s�
2 ; : : : ; �

r�;s�
`r�;s��1

; �
r�;s�
`r�;s�

C 1; : : :/

must be replaced by just .: : : ; r�; : : :/. This partition is almost just the concatenation
.�r1;s1 ; : : : ; �rd ;sd / but it has one box moved from the first row of �r�C1;s�C1 to the
last row of �r�;s� for each � 2 Œd � 1�. A classification of the cases in which � is
descending is now given as follows.

Lemma 3.14. Let d � 2. Given r1
s1
� � � � �

rd
sd

with r� and s� coprime for all �, there
exists a descending partition � D .�1; : : : ; �`/ of r D r1 C � � � C rd such that (3.18)
is satisfied if and only if the following holds:
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(i) r1 D �1 mod s1;

(ii) s� D 1 for all � 2 .1; d/;

(iii) rd D C1 mod sd .

In this case, � is given by

� D

´
..r 01 C 1/

s1 ; r2; r3; : : : ; rd�1; r
0
d
sd /; rd ¤ 1;

..r 01 C 1/
s1 ; r2; r3; : : : ; rd�1/; rd D 1;

(3.22)

where r 0� WD br�=s�c.

Proof. Suppose properties (i)–(iii) are satisfied. Then inserting the explicit expres-
sions for the partitions �r�;s� into formula (3.21) immediately tells us that � is of the
form (3.22) which is a descending partition as claimed.

Conversely, in order to argue that (i)–(iii) are necessary for � to be a descending
partition, first note that every row in (3.21) has to be descending individually which
forces �r�;s� to be descending for all �. Hence, Lemma 3.13 tells us that necessarily
r� D ˙1 mod s�. To further constrain the choice for r� and s�, note that in the case
s� � 3 the requirement that �r�;s�1 � 1 � �

r�;s�
2 implies that r� D 1 mod s� and

�
r�;s�
`r�;s��1

� �
r�;s�
`r�;s�

C 1 forces r� D �1 mod s�. This explains (i) and (iii) and tells
us that s� � 2 for � 2 .1;d/. Suppose now s� D 2 for some � 2 .1;d/. Then since we
assume � to be descending, we find that d r�

2
e� 1D�

r�;2

1 � 1��
r�;2

1 C 1Db
r�
2
cC 1

which is a contradiction. Thus, the only possibility we are left with is indeed s� D 1
for all � 2 .1; d/.

We now have everything at hand to prove the standard case of Theorem 2.14.

Proof of Theorem 2.14 (standard case). Recall that the situation of the theorem is as
follows:

�Hi;k WD ŷ yT �
�Wi;k � yT

�1 ŷ�1;

yT WD exp
� X
�2Œd�

X
k>0

�
„
�1F0;1

� �
�k

�
C „

� 12F 1
2 ;1

� �
�k

��J�
k

k

�
D yT2 yT1;

yT1 WD exp
�1
„

X
�2Œd�

X
k�s�

F0;1
� �
�k

�J�
k

k

�
;

yT2 WD exp
� 1
„
1
2

X
�2Œd�

X
k>0

F 1
2 ;1

� �
�k

�J�
k

k

�
;

ŷ WD exp
� 1
2„

X
�;�2Œd�
k;l>0

F0;2
� � �
�k �l

�J�
k
J �
l

kl

�
:
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Up to now, we have only considered the conjugation with yT1, so let us finish the
argument for that case first.

The selected modes

�Hi;k WD yT1 �
�Wi;k � yT

�1
1 ; i 2 Œr�; k � i � �.i/C ıi;1 (3.23)

with the partition

� D

´
..r 01 C 1/

s1 ; r2; r3; : : : ; rd�1; r
0
d
sd /; rd ¤ 1;

..r 01 C 1/
s1 ; r2; r3; : : : ; rd�1/; rd D 1

exactly correspond to the modes .�Hi;k/.i;k/2I>r;s , where I>r;s is the index set defined
in (3.11) by performing the identification of index sets via Lemma 3.14. Thus, Lem-
ma 3.11 tells us that after a change of basis, modes (3.23) satisfy the degree one
condition. Since by assumption

�H1;0 D
�W1;0 D J

1
0 C � � � C J

d
0 D „

1
2 .Q1 C � � � CQd / D 0;

modes (3.23) satisfy the subalgebra condition if the modes .�Hi;k/.i;k/2I� do. Here I�
is defined as in (2.11). Now using that �Hi;k is obtained from �Wi;k via conjugation,
the claim immediately follows from Theorem 2.8.

For the general case, conjugating also with yT2 and ŷ , note first of all that conjug-
ation preserves commutation relations, so the subalgebra condition still holds. For the
degree one condition, note that conjugation by yT2 gives the shifts

J
�

�k
! J

�

�k
C „

1
2 F 1

2 ;1

� �
�k

�
;

which preserves degrees, and only acts on J�
k

with k < 0, which do not occur in
�1. yT1 �

�Wi;k � yT
�1
1 / by the previous parts of the computation. Likewise, conjugation

by ŷ acts as in equation (2.27), which again preserves degrees and only affects J�
k

with k < 0, so it also preserves the degree one condition.

3.3. The exceptional case

Contrary to the case considered before, let us now allow s� D 1 for � 2 Œd �. Let us
write

zCC WD
G

�2Œd�; s�¤1

zC�;

and zC� for the collection of all components zC� on which s� D1.

Lemma 3.15. For any i 2 Œr�,

�1.
�Hi .�// D

X
z2zx�1.�/

X
Z�zx�1.�/n¹zº\ zCC

jZjDi�1

J.z/
Y
z02Z

!0;1.z
0/: (3.24)
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Proof. The proof of this lemma is verbatim to the one of Lemma 3.1 taking into
account that !0;1. �z / D 0 for all � 2 Œd � with s� D1.

Remark 3.16. Let us make two important observations. First notice that if we write
rC WD

P
�2Œd�; s�¤1

r�, then

�1.
�HrCC1.�// D

X
z2zx�1.�/\ zC�

J.z/
Y
z02 zCC

!0;1.z
0/;

and moreover that for all i > rC C 1, we have

�1.
�Hi .�// D 0:

Especially, from the last identity we deduce that, in order to end up with an Airy
structure, it is necessary to have at most one � 2 Œd � for which s� D 1. Moreover,
necessarily for this � we need r� D 1. Otherwise, there is no hope to obtain an Airy
structure.

Motivated by Remark 3.16 in the following, we will assume that only .rd ; sd / D
.1;1/ while for all other � 2 Œd � 1� we have s� ¤1, what we call the exceptional
case in Theorem 2.11. Moreover, let us assume that as before r1

s1
� � � � �

rd�1
sd�1

. Rather
than working with expression (3.24), we will mainly use that by (2.14) we have

�Hi;k D
�H 0i;k C

X
a2Z

�H 0i�1;k�a J
d
a ; i 2 Œr�; k 2 Z;

where �H 0
i;k

is obtained from �Hi;k by formally setting J d� equal to zero. Of course,
�H 0

i;k
may be computed via (3.2) replacing d by d � 1, i.e., these are modes of the

standard case. Therefore, as the modes �Hi;k are build up from modes considered in
equation (3.2) and an additional factor J d� , we can use the analysis of the standard
case from the previous section in order to prove the degree one condition for these
operators.

Let us select the following modes. For i < r , we define d>r;s.i/ exactly as in (3.7)
and set d>r;s.r/ WD 1 � sŒd�1�. Again, we define I> as in (3.11) to be the index set
associated to this choice of d>r;s.

Lemma 3.17. Assume gcd.r�; s�/ D 1 for all � 2 Œd � 1� and t r�� ¤ t
r�
� for any

distinct �, � with r�
s�
D

r�
s�

. Then there exists an invertible matrix N such that

� zH�;a D
X

.i;k/2I>r;s

N.�;a/;.i;k/
�Hi;k; .�; a/ 2 Œd � � Z>0;

satisfy the degree one condition.
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Proof. First, let us argue that

�1.
�Hi;k/ D �1.

�H 0i;k/C
X
a2Z

�0.
�H 0i�1;k�a/J

d
a (3.25)

for k � d>r;s.i/ is a linear combination of J �a s with a > 0 only. Since for i < r

we defined d>r;s.i/ exactly as in (3.7), it follows from Lemma 3.6 that the first term
�1.

�H 0
i;k
/ is a linear combination of J�a s with a > 0 only. That the second termX

a2Z

�0.
�H 0i�1;k�a/J

d
a

is a linear combination of .J da /a>0 only follows from the fact that �0.�H 0i�1;k�a/D 0
unless k � a < d>r;s.i/ as observed in (3.17). Hence,

�1.
�Hi;k/ D �1.

�H 0i;k/C
X

a>k�d>r;s.i/

�0.
�H 0i�1;k�a/J

d
a ; i 2 Œr�; k � d>r;s.i/

indeed lies in the linear span of .J�a /.�;a/2Œd��Z>0 .
In order to bring the operators into normal form, let us make use of our observation

made earlier in Remark 3.16 that

�1.
�Hr;k/ D

X
a>k�d>r;s.r/

�0.
�H 0r�1;k�a/J

d
a :

This can be rephrased in the sense that

�1.
�Hr;k/ D

X
a>0

Ak�d>r;s.r/C1;a
J da ;

where A is an upper triangular matrix whose diagonal entries

Aa;a D �0.
�H 0r�1;d>r;s.r/�1

/ D .�1/rCd
d�1Y
�D1

.F0;1
� �
�s�

�
/r� ¤ 0

can be read off from (3.16) by taking only the leading order contributions of the !0;1s
into account. Thus, one can find a two-sided inverse of A, and applying it to the
semi-infinite vector .�Hr;k/k�d>r;s.r/

, we get .� zHr;k/k�d>r;s.r/
for which

�1.
� zHr;k/ D J

d
k�d>r;s.r/C1

:

By taking again suitable linear combinations, we can use the above modes in order to
eliminate all J da from �1.

�Hi;k/ for i < r , i.e., get operators . xHi;k/.i;k/2I>r;s; i<r that
satisfy

8i 2 Œr/; k � d>r;s.i/; �1.
� xHi;k/ D �1.

�H 0i;k/:
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This expression is exactly the degree one projection of the operators considered in
Lemma 3.1, where we shifted in all cycles. From Lemma 3.11, we know that they
can be brought in normal form, provided that we can argue at last that the degree zero
projection of these modes is vanishing. This is indeed the case: since �0.�Hi;k/ D
�0.

�H 0
i;k
/ and we know by (3.17) that the degree zero projection of H 0

i;k
vanishes as

long as k � d>r;s.i/, we see the same holds for �Hi;k .

This provides us with everything we need to prove Theorem 2.11 in the excep-
tional case.

Proof of Theorem 2.14 (exceptional case). As in the standard case, we know that con-
jugation with

yT2 WD exp
� 1
„
1
2

X
�2Œd�

X
k>0

F 1
2 ;1

� �
�k

�J�
k

k

�
;

ŷ WD exp
� 1
2„

X
�;�2Œd�
k;l>0

F0;2
� � �
�k �l

�J�
k
J �
l

kl

�

preserves the Airy structure conditions. It is hence sufficient to prove that

�Hi;k WD yT1 �
�Wi;k � yT

�1
1 ; i 2 Œr�; k � 1 � �.i/C ıi;1;

yT1 WD exp
�1
„

X
�2Œd�
s�¤1

X
k�s�

F0;1
� �
�k

�J�
k

k

�
;

where we chose the partition

� D ..r 01 C 1/
s1 ; r2; r3; : : : ; rd�1/;

form an Airy structure. Indeed, as we have

�H1;0 D „
1
2 .Q1 C � � � CQd / D 0;

which vanishes by assumption, the selected modes already satisfy the subalgebra con-
dition using Theorem 2.8. On the other hand, since � is chosen so that

1 � �.i/C ıi;1 D d>r;s.i/

for all i 2 Œr�, the selected modes also satisfy the degree one condition by (3.17) as
required.



Higher Airy structures and topological recursion for singular spectral curves 45

3.4. Approximate solution to the partial differential equations

Having analysed the cases in which .�Hi;k/.i;k/2I>r;s is an Airy structure and hence
giving rise to a partition functionZ solving the associated system of differential equa-
tions to all orders in „, we now turn our attention to the question in which case the
associated differential equations are solved at leading order in the „ expansion. For
this we will use a technical lemma that holds for arbitrary families of differential
operators satisfying the degree one condition.

3.4.1. The existence of a partition function. Suppose we are in the setting of Sec-
tion 2.1.1, i.e., E is a finite-dimensional vector space over C with .xa/a2A a basis
of E�. Moreover, let �k denote the projection to the k-graded piece of D„E . This sec-
tion is devoted to the following question: In which case does a family .Ha/a2A of
differential operators satisfying the degree one condition admits a solution to

8a 2 A; e�„
�1F0 Ha e

„�1F0 � 1 D o.„
1
2 / (3.26)

of the form F0 D
P
n�3

1
nŠ
F0;n, where F0;n 2 Symn.E�/? We remark that, due to

the degree one condition, such an F0 is unique if it exists, and the free energies obey
a recursion in n. Regarding the question of existence, we have the following lemma.

Lemma 3.18. Suppose there is a family .Ha/a2A of elements in D„E that (after nor-
malisation) satisfies the degree one condition (2.1) of an Airy structure and there is
a second family .Hj /j2J whose elements satisfy

�0.Hj / D 0; �1.Hj / 2 Ch„@x� ; „
1
2 i

so that the combined family .Hi /i2A[J satisfies the subalgebra condition (2.2) up to
order „

3
2 , i.e., there exist f i3i1;i2 2 D„E so that for all i1; i2 2 A [ J

ŒHi1 ;Hi2 � � „
X

i32A[J

f
i3
i1;i2

Hi3 D o.„
3
2 /:

Then .Ha/a2A admits a solution F0 to the associated system of differential equa-
tions (3.26).

Proof. After a change of basis, we can assume that the family .Ha/a2A is normalised,
which means the operators take the form

Ha D „@xa C x
�2
C x�1.„@/�1 C .„@/�2 C o.„

1
2 /; a 2 A;

Hj D
X
b2A

Mj;b„@xb C x
�2
C x�1.„@/�1 C .„@/�2 C o.„

1
2 /; j 2 J
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for some matrix M. Here we used the same notation as in [44, Section 2.4] to represent
terms in which certain symbols may appear with a fixed order. In the following, we
will construct free energies F0;n inductively in n � 3 so that

e�„
�1

Pn
kD3 F0;kHie

„�1
Pn
kD3 F0;k .1/ D x�n C „�

1
2x�0 (3.27)

for all i 2 A[ J . Then taking F WD limn!1

Pn
kD3F0;k , we obtain a free energy that

satisfies (3.26) as claimed.
Note that since Hi � 1 D x�2 C „�

1
2x�0, the first non-trivial case is n D 3. For

this let us write Hi D .„@/D1 �Hi I0;2 C x�3 C x�1.„@/�1 C .„@/�2 C o.„
1
2 /, i.e.,

we write �Hi I0;2 for the terms „0xD2.„@/D0. Then for a1; a2 2 A, we have

ŒHa1 ;Ha2 � D „.@a2Ha1I0;2 � @a1Ha2I0;2 C x
�2
C x�0.„@/�1 C o.„

1
2 //

and since by assumption the commutator has to lie in the left ideal generated by
¹Hiºi2A[J , we get @a2Ha1I0;2 � @a1Ha2I0;2 D 0. As the last equality holds for all
a1; a2 2 A, then there exists a unique homogeneous polynomial F0;3 of degree three
in x� such that @aF0;3 D HaI0;2. With this choice, (3.27) is indeed satisfied for all
i 2 A with n D 3. So far we only used the exact same arguments as in [44, The-
orem 2.4.2]. Now we need to prove the compatibility of our choice for F0;3 with
.Hj /j2J . For this, notice that from

ŒHj ;Ha� D „
�
@aHj I0;2 �

X
b2A

Mj;b@bHaI0;2 C x
�2
C x�0.„@/�1 C o.„

1
2 /
�

which holds for all j 2 J and a 2 A, we can deduce that

@a

�
Hj I0;2 �

X
b2A

Mj;b@bF0;3

�
D 0;

which in turn implies that Hj I0;2 D
P
b2A Mj;b@bF0;3 since the term in brackets is

a homogeneous polynomial of order two. Therefore, we see that for n D 3 equa-
tion (3.27) is indeed satisfied for all i 2 J as well.

Now for the induction step, suppose we have already constructed
Pn
kD3F0;k solv-

ing (3.27) for all i 2 A [ J . Then after conjugation

xHi WD e
�„�1

Pn
kD3 F0;kHie

„�1
Pn
kD3 F0;k ;

the operators take the form

xHa D „@xa �
xHaI0;n C x

�nC1
C x�1.„@/�1 C .„@/�2 C o.„

1
2 /; a 2 A;

xHj D
X
b2A

Mj;b„@xb �
xHj I0;n C x

�nC1
C x�1.„@/�1 C .„@/�2 C o.„

1
2 /; j 2 J;
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where we wrote � xHi I0;n for the piece „0xDn.„@/D0 in xHi . We use the exact same
argument as for the base case and deduce from

ŒHa1 ;Ha2 � D „.@a2Ha1I0;n � @a1Ha2I0;n C x
�2
C x�0.„@/�1 C o.„

1
2 //

that @a2Ha1I0;n � @a1Ha2I0;n D 0. Hence, there is a homogeneous polynomial F0;nC1
of degree nC 1 satisfying @aFnC1 D xHaI0;n as required. The compatibility with the
operators . xHj /j2J similarly follows from inspecting

ŒHj ;Ha� D „
�
@aHj I0;n �

X
b2A

Mj;b@bHaI0;n C x
�2
C x�0.„@/�1 C o.„

1
2 /
�

with j 2 J , a 2 A, from which we deduce that

@a

�
Hj I0;n �

X
b2A

Mj;b@bF0;nC1

�
D 0:

For this to be satisfied, Hj I0;n �
P
b2A Mj;b@bF0;nC1 must itself vanish. So we see

that with our choice for F0;nC1, we indeed have

e�„
�1

PnC1
kD3

F0;kHie
„�1

PnC1
kD3

F0;k � 1 D e�„
�1F0;nC1 xHie

„�1F0;nC1 � 1

D x�nC1 C „�
1
2x�0

for all i 2 A [ J which proves the induction step.

Remark 3.19. For expositional reasons, we chose to prove Lemma 3.18 in the set-
ting of finite-dimensional vector spaces but we stress that the statement of the lemma
carries over to the case where E is a filtered vector space and .Ha/a2A is a filtered
family of elements in yD„E . We leave it to the reader to check the details.

Remark 3.20. In the language of [9, 44], Lemma 3.18 is only a statement about the
classical limit of the family .Ha/a2A since all higher-order terms in „

1
2 essentially

play no role. We chose to present the statement in the quantum setting neverthe-
less since all differential operators considered in this paper come with a natural „-
refinement.

3.4.2. The proof of Theorem 2.13. Let us now apply Lemma 3.18 to the family
of modes .�Hi;k/.i;k/2I>r;s from Section 2.3.3 in order to work out sufficient condi-
tions under which the operators admit a solution to their associated system of dif-
ferential equations up to corrections in „

1
2 . In Lemmas 3.11 and 3.17, we already

analysed the cases in which this family satisfies the degree one condition. So in
order to apply Lemma 3.18, we need to find a set J � Œr� � Z so that the com-
bined family .�Hi;k/.i;k/2I>r;s[J satisfies the subalgebra condition and the operators
.�Hi;k/.i;k/2J feature no terms involving x�� in degree one. As shown in Lemma 3.8,



G. Borot, R. Kramer, and Y. Schüler 48

the latter requirement forces that we choose J � I�r;s n I
>
r;s. Therefore, again by mak-

ing use of Theorem 2.8, the question of when the operators .�Hi;k/.i;k/2I>r;s admit
a solution to the associated system of differential equations to leading order in „

1
2 is

reduced to the question whether we can find a descending partition � ` r for which
I>r;s � I� � I

�
r;s because if such a partition exists, we can simply take J D I� n I>r;s

and apply Lemma 3.18. A characterisation when this is possible is presented in the
following.

Lemma 3.21. Given r1
s1
� � � � �

rd
sd

with r� and s� coprime integers for all �, there
exists a descending partition � such that

I>r;s � I� � I
�
r;s (3.28)

if the following points are satisfied:

(i) r� D ˙1 mod s� for all � 2 Œd �.

(ii) For all �1 ¤ �2 with s�i > 2 such that either

r�1 D 1 mod s�1 and r�2 D 1 mod s�2

or
r�1 D �1 mod s�1 and r�2 D �1 mod s�2 ;

one has b
r�1
s�1
c ¤ b

r�2
s�2
c.

(iii) If there are pairwise distinct �1;�2;�3 2 Œd � with b
r�1
s�1
c D b

r�2
s�2
c D b

r�3
s�3
c,

then there is an m 2 ¹1; 2; 3º for which s�m D 1.

Proof. First, let us describe what a possibly non-descending partition �0 looks like
that satisfies I�0 D I�r;s. On the intervals i D i 0 C r Œ��1� 2 .r Œ��1�; r Œ���, we have

1 � dr;s.i/ D �
r� ;s� .i 0/C sŒ��1�;

where �r� ;s� is the partition described in Lemma 3.13. To analyse the transitions
between these intervals, let us for a moment assume that r� > 1 and s� < r� for all
� 2 d . These special cases will be treated separately later. Under these assumptions,

.1 � d�r;s.r Œ�� C 1// � .1 � d�r;s.r Œ��1�// D .1C sŒ��/ � sŒ�� D 1;

and thus the partition �0 D .�r1;s1 ; : : : ; �rd ;sd / satisfies I�0 D I�r;s. Since by assump-
tion (i) each block �r� ;s� in �0 is descending, we only need to check whether it is
descending at the transitions, i.e., whether �r� ;s�

`r�;s�
� �

r�C1;s�C1
1 for all � 2 Œd � 1�,

and if not, whether we can modify �0 into a descending partition � satisfying (3.28).
For this note that �r� ;s�

`r�;s�
� �

r�C1;s�C1
1 holds if and only ifjr�

s�

k
�

lr�C1
s�C1

m
:
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This means that in the case b r�
s�
c> b

r�C1
s�C1
c for all � 2 Œd � 1�, the partition �0 is indeed

descending and so we can choose � D �0. If however there is a � 2 Œd � for which
b
r�
s�
c D b

r�C1
s�C1
c, we need to be more careful. The case where at least one of s� or

s�C1 equals 1 is unproblematic since then b r�
s�
c � d

r�C1
s�C1
e is automatically satisfied.

However, if s�; s�C1 > 1, we have b r�
s�
c< d

r�C1
s�C1
e. The lack of �0 being descending at

this transition can be cured as follows. First, notice that (ii) forces that r� D �1 mod
s� and r�C1D 1 mod s�C1. One should remark here that the second case r�D 1 mod
s� and r�C1 D �1 mod s�C1 allowed by (ii) can only occur if s� D s�C1 D 2 and is
hence contained in the first case. Pictorially, we are in the following setting:

�0 D

:::

: : :

: : :

: : :
:::

:::
: : :

:::
:::

: : :

: : :

: : :

: : :

: : :
:::

:::
: : :

:::

: : :

: : :
:::

9>>>=>>>; D �r�;s� ;

9>>>=>>>; D �r�C1;s�C1 :

(3.29)

We will now make use of the fact that there is a certain ambiguity in choosing �,
so that I� lies between I>r;s and I�r;s. So far we focused on the partition �0 satisfying
I�0 D I

�
r;s. Now notice that deleting an element

.r Œ�� C 1;�sŒ��/ 2 I
�
r;s n I

>
r;s

affects the partition describing the index set in the sense that one box from the first
row of �r�C1;s�C1 gets shifted to the last row of �r�;s� , i.e., the index sets associated
to the partitions

�0 D .�
r1;s1
1 ; : : : ; �

r�;s�
`r�;s��1

; �
r�;s�
`r�;s�

; �
r�C1;s�C1
1 ; �

r�C1;s�C1
2 ; : : : ; �

rd ;sd
`rd ;sd

/;

�00 D .�
r1;s1
1 ; : : : ; �

r�;s�
`r�;s��1

; �
r�;s�
`r�;s�

C 1; �
r�C1;s�C1
1 � 1; �

r�C1;s�C1
2 ; : : : ; �

rd ;sd
`rd ;sd

/

are related by I�00 D I�0 n ¹.r Œ�� C 1;�sŒ��/º. The index set I�00 then still satisfies
I>r;s � I�00 � I

�
r;s as required. We notice now that if we perform such a box shift in

the case displayed in (3.29), we indeed obtain a partition �00 that is descending at
the transition between the �-th and .� C 1/-th blocks. This solves the problem of
having two subsequent blocks with b r�

s�
c D b

r�C1
s�C1
c. However, if there is a sequence

b
r�
s�
c D : : : D b

r�Ca
s�Ca
c with a > 1, then by (iii) we must already have s�C2 D � � � D

s�Ca D 1.
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This means that if also s�C1 D 1, there is nothing to worry about, and in the case
s�C1 > 1 we have

�0 D

:::

: : :

: : :

: : :
:::

:::
: : :

:::
:::

: : :

: : :

: : :

: : :

: : :
:::

:::
: : :

:::

: : :

: : :

: : :
:::

:::
:::

: : :
:::

9>>>=>>>; D �r�;s� ;

9>>>=>>>; D �r�C1;s�C1 ;

D �r�C2;s�C2 ;
:::

D �r�Ca;s�Ca

and so we can perform a box shift in order to construct a descending partition �
from �0. This finishes the construction of a partition � satisfying (3.28) if s� < r� and
r� > 1 for all � 2 Œd �.

Hence, we are left with the cases in which possibly r� D 1 or s� D r� C 1 for
� 2 Œd �. So suppose there is a �with s� D r� D 1 and assume that � 2 Œd � is minimal
with this property. Then from our assumption that r�1

s�1
�

r�2
s�2

for �1 � �2, we deduce
that necessarily s� � r� and r� > 1 for all � < �. Hence, we know from our previous
analysis that we can find a partition � ` r Œ��1� whose associated index set I� satisfies

I>r;s \ ¹.i; k/ j i � r Œ��1�º � I� � I
�
r;s \ ¹.i; k/ j i � r Œ��1�º:

Now let ı � � be maximal with r� D s� D 1 for all � 2 Œ�; ı�. Then we compute

.1 � d�r;s.r Œ��1� C 1// � .1 � d�r;s.r Œ��1�// D 1

for all � 2 Œ�; ı� and thus

I>r;s \ ¹.i; k/ j i � r Œı�º � I�0 � I
�
r;s \ ¹.i; k/ j i � r Œı�º

if we choose �0D .�;1ı��C1/which is descending. Since we have chosen ı maximal,
we must have s� > r� for all � > ı which however implies that ı 2 ¹d � 2; d � 1º
by (iii). First, let us assume ı D d � 1. Then

�d�r;s.r Œd�1� C 1/C d�r;s.r Œd�1�/ D 1;

and thus
I>r;s � I.�0;1rd / � I

�
r;s:
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Now suppose ı D d � 2. In this case, we need to be more careful. First, let us assume
rd�1 > 1 which due to (i) forces sd�1 D rd�1 C 1 and thus also rd D 1 due to (ii).
We find that between the two transition points

�d�r;s.r Œd�2� C 1/C d�r;s.r Œd�2�/ D 1;

�d�r;s.r Œd�1� C 1/C d�r;s.r Œd�1�/ D 2:

The fact that d�r;s jumps by two between r Œd�1� ! r Œd�1� C 1 D r is only a mild
problem that can be cured by not including .r Œd�;�sŒd�1�/ into our index set. Indeed,
if we choose �00 D .�0; 1rd�1 ; 1/, then the associated index set indeed has the desired
property that I>r;s � I�00 � I

�
r;s.

Lastly, let us assume that rd�1 D 1. In this case, (i) and (ii) only leave us with
sd�1 D 2 and rd D 1. Recall here that we treated the case sd�1 D 1 earlier. This time
we find

�d�r;s.r Œd�2� C 1/C d�r;s.r Œd�2�/ D 1;

�d�r;s.r Œd�1� C 1/C d�r;s.r Œd�1�/ D 2:

Again we remedy the jump of 2 in d�r;s by deleting .r Œd�;�sŒd�1�/ from the index set
and finally as in the case before we find that .�0; 1; 1/ satisfies the desired property
I>r;s � I.�0;1;1/ � I

�
r;s.

Remark 3.22. The statement of Lemma 3.21 can easily be extended to the excep-
tional case. If rd D 1, then d>r;s and d�r;s actually do not depend on the choice of sd for
finite sd . Therefore, we can extend the definition of d>r;s and d�r;s to the case sd D 1
by choosing d>r;s.r/ D d�r;s.r/C 1 D �sŒd�1� C 1 as in the finite setting. Thus, all the
results of Lemma 3.21 easily translate to the exceptional case if we adopt the con-
vention that we say rd D 1 mod sd if .rd ; sd / D .1;1/ and interpret rd

sd
as being

zero.

As motivated in the introduction of this subsection, we can now easily use Lem-
ma 3.21 to prove Theorem 2.13.

Proof of Theorem 2.13. The partition � in the statement of the theorem is chosen
so that 1 � �.i/C ıi;1 D d>r;s.i/ for all i 2 Œr�. Thus, we already know from Lem-
mas 3.11 and 3.17 that the selected modes satisfy the degree one condition. Moreover,
Lemma 3.21 tells us that we can choose a partition �0 so that the modes .�Hi;k/.i;k/2J
associated to the index set J D I�0 n I>r;s satisfy the properties required in Lemma 3.18.
Therefore, the lemma ensures the sought-after existence of a leading order solution to
the system of differential equations associated to .�Hi;k/.i;k/2I� .
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Part II
Spectral curve descriptions

In this part, we translate the differential constraints coming from the W -algebra rep-
resentations from Section 2 into constraints on the order of poles of certain combin-
ations of multidifferentials !g;n on a spectral curve built from the coefficients Fg;n.
The latter constraints are called “abstract loop equations”. In a second step, we show
that the unique solution to the abstract loop equations is provided by an adapta-
tion of Bouchard–Eynard topological recursion to the setting of singular spectral
curves. In fact, this provides us with the right definition of the topological recur-
sion à la Chekhov–Eynard–Orantin in this setting, together with the proof that it is
well-defined.

4. From Airy structures to local spectral curves

4.1. Fields for a single cycle

We will start by reconsidering Section 2.2.3 in the case of � consisting of a single
cycle of length r . In this case, we can omit all �-indices, and consider

Jk D

8̂̂<̂
:̂
„@xk if k > 0;

„
1
2Q if k D 0;

�kx�k if k < 0

the standard representation of the Heisenberg algebra of glr . It is useful to write
zx D zr . We split the current as follows:

J.z/ D
X
k2Z

Jk dz
zkC1

D JC.z/C J�.z/C „
1
2
Qdz
z
;

JC.z/ D
X
k>0

J�k z
k�1 dz;

J�.z/ D
X
k>0

Jk dz
zkC1

:

Choose a primitive r-th root of unity # and let f.z/ D ¹z; #z; : : : ; #r�1zº. Set

!std
0;2.z1; z2/ D

dz1dz2
.z1 � z2/2

:

We can rewrite (2.17) as
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Wi .zx/ D
1

r

X
ZWŒi�,!f.z/

X
0�j�bi=2c

A0tACtA�DŒ2jC1;i�

„j

2j j Š.i � 2j /Š

jY
lD1

!std
0;2.Z2l�1; Z2l/

�

Y
l2A0

Qdz
z

Y
l2AC

JC.Zl/
Y
l2A�

J�.Zl/: (4.1)

As in Section 2.3.3, let us apply a general dilaton shift and change of polarisation to
these operators. We take

yT D exp
�X
k>0

.„�1 F0;1Œ�k�C „
� 12F 1

2 ;1
Œ�k�/

Jk

k

�
;

ŷ D exp
� 1
2„

X
k1;k2>0

F0;2Œ�k1;�k2�
Jk1Jk2
k1k2

�
;

in which we can always assume that F0;2Œ�k1;�k2�D F0;2Œ�k2;�k1�, and introduce

Hi .zx/ WD ŷ yT �Wi .zx/ � yT
�1 ŷ�1:

The effect of the dilaton shift yT in formula (4.1) is to replace JC.z/ by JC.z/ C
„
1
2 .! 1

2 ;1
.z/ �Q dz

z
/C !0;1.z/, where

!0;1.z/ WD
X
k>0

F0;1Œ�k� z
k�1dz; ! 1

2 ;1
.z/ WD Q

dz
z
C

X
k>0

F 1
2 ;1
Œ�k�zk�1dz:

Using the Baker–Campbell–Hausdorff formula, it is easy to see that the net effect of
the change of polarisation ŷ is to replace !std

0;2 by

!0;2.z1; z2/ WD
dz1dz2
.z1 � z2/2

C

X
k1;k2>0

F0;2Œ�k1;�k2�z
k1�1
1 z

k2�1
2 dz1dz2

and to replace J�.z/ by1

J�.z/ WD
X
k>0

Jk d��k.z/; (4.2)

where for k > 0,

d��k.z/ WD
dz
zkC1

C

X
l>0

F0;2Œ�k;�l �

k
d�l.z/ D Res

z0D0

�Z z0

0

!0;2.�; z/

�
dz0

.z0/kC1
:

1More precisely, the conjugation by ŷ leaves J�.z/ invariant and adds extra terms with
positive J s in JC.z/. We collect all terms with negative (resp. positive) J s in JC (resp. J�),
thus leading to (4.2).
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For uniformity, we also define for k � 0,

d�k.z/ WD zk�1dz:

So, we can rewrite

!0;1.z/ D
X
k>0

F0;1Œ�k� d�k.z/;

! 1
2 ;1
.z/ D Q d�0.z/C

X
k>0

F 1
2 ;1
Œ�k� d�k.z/;

!0;2.z1; z2/ D
dz1 dz2
.z1 � z2/2

C

X
k1;k2>0

F0;2Œ�k1;�k2� d�k1.z1/d�k2.z2/;

so that we have
JC.z/ WD JC.z/ D

X
k>0

kxk d�k.z/:

We then obtain

rHi .zx/ D
X

ZWŒi�,!f.z/
0�j�bi=2c

A0tA 1
2
tACtA�DŒ2jC1;i�

„
jC 12 jA 1

2
j

2j j Š.i � 2j /Š

jY
lD1

!0;2.Z2l�1; Z2l/

�

Y
l2A0

!0;1.Zl/
Y
l2A 1

2

! 1
2 ;1
.Zl/

Y
z02AC

JC.z
0/
Y
z02A�

J�.z
0/: (4.3)

We prefer to convert this expression into a sum over subsetsZ � f.z/ of cardinality i .
Then, we have to sum over partitions B1 t � � � t Bj t A0 t A 1

2
t AC t A� D Z,

where jBl j D 2 for any l 2 Œj �, and it can arise in exactly 2j .i � 2j /Š terms in (4.3)
corresponding to the choice of an order within each pair Bj , and the choice of a la-
belling by Œ2j C 1; i � for the elements inA0 tA 1

2
tAC tA�. So only the factor 1=j Š

remains. It can also be erased by forgetting the ordering of B1; : : : ; Bj . More pre-
cisely, introducing the set P .f.z// whose elements are sets of disjoint pairs in f.z/,
and writing tP WD

F
P2P P if P 2 P .f.z//, we obtain

rHi .zx/ D
X

Z�f.z/
jZjDi

X
.tP/tA0tA 1

2
tACtA�DZ

P2P .f.z//

„
jPjC 12 jA 1

2
j Y
¹z0;z00º2P

!0;2.z
0; z00/

�

Y
z02A0

!0;1.z
0/
Y
z02A 1

2

! 1
2 ;1
.z0/

Y
z02AC

JC.z
0/
Y
z02A�

J�.z
0/:
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4.2. Fields for an arbitrary twist

We now return to the general situation of Section 2.2.3. Let � be a permutation of Œr�
with cycles of lengths r� labelled by�2 Œd �. For each�2 Œd �, we have generators J�

k

of the Heisenberg algebra of glr� :

J
�

k
D

8̂̂<̂
:̂
„@x�

k
if k > 0;

„
1
2Q� if k D 0;

�kx
�

�k
if k < 0;

whose currents we split as J�C.z/ and J�� .z/ in the same way as in Section 4.1.
We obtain modes W �

i�;k�
indexed by i� 2 Œr�� and k� 2 Z for a representation of

the W.glr/ algebra given by (2.15). To match Section 4.1, we introduce for each
� 2 Œd � formal variables z such that zx D zr� . These z thus depend on �, but they will
appear in generating series with superscript � so that one can infer directly from the
formula which power r� one should use to relate it to the global variable zx.

At this stage, we are naturally led to introduce a curve which is the union of copies
of a formal disk for each � 2 Œd �:

zC D

dG
�D1

zC�; zC� WD Spec CJzK:

When necessary to avoid confusion, points in zC will be denoted by . �z / to indicate in
which copy of the formal disk we consider them. One can consider zx as a branched
cover

zC ! V WD Spec CJXK

given by z 7! zr� on the �-th copy of the z-formal disk. The smooth (but reducible)
curve zC is in fact the normalisation � W zC ! C of the singular curve

C D Spec CJx; zK=
� dY
�D1

.x � zr�/

�
:

The branched cover zxW zC ! V factors through xWC ! V . This is the local picture
we will globalise later in Section 5 by considering more general branched covers

zC
�
�!C

x
�!V; zx D x ı �;

where V , zC are regular curves andC is a possibly singular curve whose normalisation
is zC . For the moment, we stick to the local setting.
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Let us again consider a general dilaton shift and change of polarisation

yT D exp
� X
�2Œd�
k>0

�
„
�1 F0;1

� �
�k

�
C „

� 12 F 1
2 ;1

� �
�k

��J�
k

k

�
;

ŷ D exp
� 1
2„

X
�;�2Œd�
k;l>0

F0;2
� � �
�k �l

�J�
k
J �
l

kl

�
and the conjugated operator

Hi .zx/ D ŷ yT �Wi .zx/ � yT
�1 ŷ�1 D

X
k2Z

Hi;k.dzx/i

zxkCi
:

To expressHi .zx/, we introduce the basis of meromorphic 1-forms d��
k

on zC , indexed
by � 2 Œd � and k 2 Z. It is defined by

k � 0W d��
k
. �z / D ı�;� z

k�1 dz; (4.4)

k > 0W d��
�k
. �z / D ı�;�

dz
zkC1

C

X
l>0

F0;2
� � �
�k �l

�
k

zl�1 dz: (4.5)

We also introduce the meromorphic forms !0;1, ! 1
2 ;1

and bidifferential !0;2 on zC :

!0;1 D
X
�2Œd�
k>0

F0;1
� �
�k

�
d��
k
;

! 1
2 ;1
D

X
�2Œd�

Q�d��0 C
X
k>0

F 1
2 ;1

� �
�k

�
d��
k
;

!0;2 D !
std
0;2 C

X
�1;�22Œd�
k1;k2>0

F0;2
� �1 �2
�k1 �k2

�
d��1
k1

d��2
k2
;

where

!std
0;2

�
�1 �2
z1 z2

�
D
ı�1;�2 dz1dz2
.z1 � z2/2

:

For k 2 Z, we introduce the 1-form on zC

d��k .
�
z / D d��

k
. �z /:

We recall that the index � 2 Œd � of the component to which a point z0 2 zC belongs is
implicit in the data of z0.

Similarly to Section 4.1, the effect of the dilaton shift is to replace J�C.z/ by

J
�
C.z/C „

1
2

�
! 1
2 ;1
. �z / �Q�

dz
z

�
C !0;1.

�
z /;
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while the effect of the change of polarisation is to replace !std
0;2.z1; z2/ by !0;2

�
�1 �2
z1 z2

�
and J�� .z/ by

J�.
�
z / WD

X
k>0

J
�

k
d��
�k.

�
z /:

For uniformity, we also set

JC.
�
z / WD J

�
C.z/ D

X
k>0

kx
�

k
d��k .

�
z /:

We can repeat the argument of Section 4.1 with several �s, defining the fiber over zx
in zC

f.z/ WD

dG
�D1

f�.z/

and getting

Hi .zx/ D
X

Z�f.z/
jZjDi

X
.tP/tA0tA 1

2
tACtA�DZ

P2P .f.z//

„
jPjC 12 jA 1

2
j Y
¹z0;z00º2P

!0;2.z
0; z00/

�

Y
z02A0

!0;1.z
0/
Y
z02A 1

2

! 1
2 ;1
.z0/

Y
z02AC

JC.z
0/
Y
z02A�

J�.z
0/:

4.3. Action of the fields on the partition function

Given a formal function

F D
X

g�0; n�1
2g�2Cn>0

X
�1;:::;�n2Œd�
k1;:::;kn>0

„g�1

nŠ
Fg;n

� �1 ��� �n
k1 ��� kn

� nY
iD1

x
�i
ki
; (4.6)

let us compute
Gi .zx/ D e

�FHi .zx/e
F
� 1:

The partition function eF is annihilated by the differential operators above a certain
index in the W if and only if the Gi satisfy certain bounds on their pole orders as
zx ! 0. Because F is a function (i.e., it does not contain a differential part), it com-
mutes with !0;2, !0;1, ! 1

2 ;1
, and JC. The only non-trivial computation is

e�F J�.z
0/eF D J�.z

0/C ŒJ�.z
0/; F �;

where each term J�.z
0/ obtained like this has to act on a later ŒJ�.z00/; F �, as it

annihilates 1. The J� commute among each other, so we get a partition of A� into
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sets of operators acting on a single copy of F . We obtain

Gi .zx/ D
X

Z�f.z/
jZjDi

X
.tP/tA0tA 1

2
tACtA�DZ

P2P .f.z//

„
jPjC 12 jA 1

2
j Y
¹z0;z00º2P

!0;2.z
0; z00/

�

Y
z02A0

!0;1.z
0/
Y
z02A 1

2

! 1
2 ;1
.z0/

Y
z02AC

� X
zkz0�1

zkz0x
�z0

zkz0
d��
zkz0
.z0/

�
�

X
L`A�

gL;mL�0;L2L
2gL�2CmLCjLj>0

Y
L2L

X
�LW ŒmL�!Œd�
`LW ŒmL�!N�

kLWL!N�

�
„gL�1CjLj

mLŠ

� FgL;jLjCmL
��jL �L;1 ��� �L;mL
kL `L;1 ��� `L;mL

� Y
l2ŒmL�

x
�L;l
`L;l

Y
z02L

d��
�kz0

.z0/
�
; (4.7)

where �WAC t A� ! Œd � associates to z0 the index �z0 2 Œd � such that z0 2 f�z0 .z/,
and we identify �jL and kL with the tuples .�z0/z02L and .kz0/z02L, respectively.

We decompose Gi in homogeneous terms with respect to the exponent of „ and
the number of x�

k
:

Gi .zx/ D
X
g;n�0

„g

nŠ
Gi Ig;n.zx/:

In order to completely rephrase this in terms of spectral curves, we need to get rid
of the x�

k
and replace them with d�s. For every n, prepare a tuple wŒn� D .wj /njD1 of

points on zC and define

E.i/g;n.zxIwŒn�/ WD

nY
jD1

adJ�.wj /Gi Ig;n.zx/:

To compute it, we introduce the multidifferential forms for g � 0 and n � 1 such that
2g � 2C n > 0,

!g;n.z1; : : : ; zn/ WD
X

�1;:::;�n2Œd�
k1;:::;kn>0

Fg;n
� �1 ��� �n
k1 ��� kn

� nY
jD1

d��i
�ki
.zi /: (4.8)

Besides, under this action, we get

adJ�.w/

�X
k>0

k x�k d��
k
.z/
�
D

X
k>0

k d��
�k.w/ d��

k
.z/;

which is the series expansion of !0;2. � �w z / with jzj < jwj.
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We then notice that the sums over zkz0 , kL, �L and `L in (4.7) recombine into

E.i/g;n.zx;wŒn�/ D
X

Z�f.z/
jZjDi

X
.tP/tA0tA 1

2
tACtA�DZ

P2P .f.z//

X
�WAC,!Œn�

X
L`A�

M`LŒn�n�.AC/X
gL�0;L2L

2gL�2CjLjCjMLj>0
1
2 jA 1

2
jCjPjCjA�jC

P
L.gL�1/Dg

Y
¹z0;z00º2P

!0;2.z
0; z00/

Y
z02A0

!0;1.z
0/

�

Y
z02A 1

2

! 1
2 ;1
.z0/

Y
z02AC

!0;2.w�.z0/; z
0/
Y
L2L

!g;jLjCjMLj.L;wML/:

We now observe that the factors !0;1, ! 1
2 ;1

, !0;2 can be treated uniformly by summing
over partitions L `Z and allowing .gL; jLj CmL/D .0; 1/; .12 ; 1/; .0; 2/, which were
exactly the terms for which 2gL � 2C jLj CmL � 0. We get

E.i/g;n.zxIwŒn�/ D
X

Z�f.z/
jZjDi

X
L`Z
N`LŒn�

X
gL�0;L2L

gDiC
P
L.gL�1/

Y
L2L

!gL;jLjCjNLj.L;wNL/:

4.4. From partial differential equations to abstract loop equations

Theorem 2.14 gives sufficient conditions on the values of .r�/d�D1, of positive integers
.s�/

d
�D1, of scalars .t�/d�D1 and .Q�/d�D1 to get a unique F of the form (4.6) such

that for any i 2 Œr� and k � dr;s.i/,

e�FHi;ke
F
� 1 D 0:

The translation of these differential constraints in terms of the correlators

! D .!g;n/g;n

defined in (4.8) is called “abstract loop equations”. It says that for any n � 0, we have

E.i/g;n.zxIwŒn�/ 2 o.zx
�dr;s.i// �

�dzx
zx

�i
; zx ! 0:

In other words, E
.i/
g;n.zx; wŒn�/ is meromorphic and has a pole of order strictly less

than dr;s.i/ C i at the point zx D 0 in V . If we let zE.i/g;n.z; wŒn�/ be its pullback to
a meromorphic i -differential on zC , this is tantamount to requiring that for any�2 Œd �,

zE.i/g;n
�
�
z I wŒn�

�
2 o.z�r�dr;s.i// �

�dz
z

�i
; z ! 0:
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5. Topological recursion on global spectral curves

We are going to formalise what we have found in the context of global, possibly
singular spectral curves. This will lead us to define the appropriate notion of abstract
loop equations in Section 5.2, and to show in Section 5.4 that its unique solution is
given by an appropriate topological recursion à la Chekhov–Eynard–Orantin, that is,
by computing residues on the normalisation of the singular curve.

5.1. Spectral curves

Definition 5.1. A spectral curve is a triple C D .C; x; y/, where C is a reduced
analytic curve over C, and x, y are meromorphic functions on C such that all fibers
of x are finite and !0;1 WD y dx has no poles at ramifications of x.

Note that C is not necessarily connected, compact, or irreducible. We will work
with its normalisation � W zC ! C , which is a smooth curve. We have meromorphic
functions zx D x ı � and zy D y ı � defined on zC . Let b � C be the set of points b
that have a neighbourhood Ub such that the cardinality of the fiber of x is constant
on Ub n ¹bº and strictly smaller at b itself. It is the collection of branchpoints of zx
and images of locally reducible points away from1. We also denote aD x�1.b/ and
za D zx�1.b/. We assume that b is finite. As a result, za and a are also finite. Note that,
since we assumed that all fibers of x are finite, the same is true of zx and there cannot
be an irreducible component of zC where zx is constant.

If ˛ 2 a, we let U˛ � C be a small neighbourhood of ˛ that is invariant under
local Galois transformations and

zU˛ WD �
�1.U˛/; zU 0˛ D

zU˛ n �
�1.˛/; V˛ D x.U˛/; V 0˛ D V˛ n ¹x.˛/º:

Without loss of generality, we can assume that V˛ � C. If z 2 zU˛ , we define

f˛.z/ D zx
�1.zx.z// \ zU˛; f 0˛.z/ D f˛.z/ n ¹zº; za˛ D �

�1.˛/:

Note that za˛ is in bijection with the set of branches in zC above ˛, and we denote
d˛ WD jza˛j. For each � 2 za˛ , we introduce a small neighbourhood zC� of � in zC such
that �. zC�/ D U˛ , as well as zC 0� D zC� n ¹�º. We have of course

zU˛ D
G
�2za˛

zC�:

By taking a smaller neighbourhood, we can always assume that the . zC�/�2za are pair-
wise disjoint. As anticipated in Section 4.2, if we want to insist that a point z 2 zU˛
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belongs to zC�, we will denote it by . �z /. The fibers can be decomposed

f˛.z/ D
G
�2za˛

f�.z/; f�.z/ WD f˛.z/ \ zC�:

We denote jf�.z/j, which is independent of z 2 zC 0�, by r�, and jf˛.z/j, which is
independent of z 2 zU 0˛ , by r˛ . In particular,

r˛ D
X
�2za˛

r�:

If  is a small loop in V˛ around x.˛/, it induces a Galois transformation in the
cover zx

j zU˛
, that is, a permutation �˛ of f˛.z/ for each z 2 zU 0˛ that on Qf�.z/ restricts to

a cyclic transformation of order r�. This integer represents the order of ramification
at � 2 za˛ of zx

j zC�
.

Remark 5.2. If jza˛j D 1, C is irreducible locally at ˛, hence smooth at ˛. We can
then use the same symbol to denote the point ˛ 2 C and the unique point above it
in zC . If jza˛j > 1, C is reducible locally at ˛, hence singular at ˛. If jza˛j D 2, ˛ is
a node. For � 2 za, we have r� D 1 if and only if � is not a ramification point of zx.
We say that the spectral curve is smooth if all ramification points in C are smooth.

For each ˛ 2 a and � 2 za˛ , there exists a local coordinate � on zC� such that

zx. �z / D x.˛/C �.z/
r� :

As in Section 4.2, when working with local coordinates, it should be clear from the
context which zC� is involved. Specifying such coordinates requires the choice of
a r�-th root of unity for zx � x.˛/. We assume such a choice is fixed. We also choose
a primitive r�-th root of unity, denoted by #�. If z 2 zC 0�, the set of coordinates of the
points in f˛.z/ is ®

#j� �
r�=r� j � 2 za˛; j 2 Œr� �

¯
:

Let us write locally at � 2 a the Laurent series expansion of the function zy

zy. �z / �
X
k>0

1

r�
F0;1

� �
�k

�
�k�r�

and define
s� WD min

®
k 2 Z j F0;1

� �
�k

�
¤ 0

¯
2 Z [ ¹C1º:

In particular, s� D C1 if y vanishes identically in the connected component of �
in zC . If s� is finite, we introduce

t� WD �
1

r�
F0;1

� �
�s�

�
:
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We equip za˛ with a total order 4 satisfying

� 4 � )
r�

s�
�
r�

s�

and denote by � the corresponding strict order (such orders exist). Note that the
inequality still makes sense for �s such that s� D C1. Then, in agreement with
Section 3, for �;� 2 za˛ we let

Œ�� WD ¹� 2 za˛ j � 4 �º;
Œ�/ WD ¹� 2 za˛ j � � �º;

Œ�; �� WD ¹� 2 a˛ j � 4 � 4 �º;

and likewise for the open segments Œ�;�/, .�;��, etc. For instance, Œ�/D Œminza˛;�/.
If M � za˛ , we let

rM WD
X
�2M

r�; sM WD
X
�2M

s�:

For � 2 za˛ , we define
�� WD rŒ��s� � sŒ��r�:

Definition 5.3. For ˛ 2 a, we define a function of z 2 zU˛ by

Y˛.z/ WD
Y

z02f0˛.z/

.zy.z0/ � zy.z//:

In the next subsection, we will need to study the order of vanishing of these func-
tions at za. This is given by the following lemma.

Lemma 5.4. If one of the following conditions is satisfied:

(i) there exist distinct �; � 2 za˛ such that s� D s� D C1; or

(ii) there exists at least one � 2 za˛ such that s� D C1 and r� > 1,

then Y˛.z/ vanishes identically on zC� for the � involved in these conditions. Other-
wise, for any � 2 za˛ , we have Y˛.z/ 2 O.�v�/ when z 2 zC� approaches �, where

v� D .s� � r�/.r˛ � 1/ ���: (5.1)

If furthermore either

(iii) there exist distinct �; � 2 za˛ such that s�, s� are finite, r�
s�
D

r�
s�

and t r�� D
t
r�
� ; or

(iv) there exists � 2 za˛ such that s� is finite and gcd.r�; s�/ > 1,

then Y˛.z/ 2O.�v�C1/. If none of the above conditions are satisfied, then there exists
a non-zero scalar t˛;� such that Y˛.z/ � t˛;��

v� 2 O.�v�C1/.
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Proof. If s� D C1, zy is identically zero for z 2 zC�. Conditions (i) and (ii) both
imply there is a z0 2 f 0˛.z/ such that zy.z0/ � 0 as well, so one of the factors in Y˛.z/
vanishes identically.

We now assume that (i) and (ii) are not satisfied. Let us add for the moment the
assumption that all s� are finite. We compute

Y
z02f�.z/

.zy.z0/ � zy.z// D

� r��1Y
jD1

.#
s�j
� � 1/

�
.�t�/

r��1 �.s��r�/.r��1/

CO.�.s��r�/.r��1/C1/; (5.2)

and observe that the scalar prefactor in the first term is non-zero if and only if r�
and s� are coprime – in that case it is equal to r�t

r��1
� . For � 2 za˛ distinct from �,

we haveY
z02f�.z/

.zy.z0/ � zy.z// D

r��1Y
jD0

.�t�#
j
� �
r�.s��r�/=r� C t��

s��r� C � � � /

D t�;��
min.r�s� ;r�s�/�r�r�CO.�min.r�s� ;r�s�/�r�r�C1/; (5.3)

where � � � are higher-order terms, and

t�;� D

8̂̂<̂
:̂
�t
r�
� if r�s� < r�s�;

t
r�
� if r�s� > r�s�;

t
r�
� � t

r�
� if r�s� D r�s�:

We have t�;� D 0 if and only if .�; �/ obeys condition (iii). Multiplying (5.2) with the
product of (5.3) over all � ¤ �, we deduce that Y˛.z/ D t˛;��

v� C O.�v�C1/ and
t˛;� D 0 if and only if conditions (iii) and (iv) are satisfied, with the exponent

v� D .s� � r�/.r� � 1/C
X
�¤�

.min.r�s� ; r�s�/ � r�r�/

D r� � s� C
X
�2za˛

�
min.r�s� ; r�s�/ � r�r�

�
D �r�.r˛ � 1/ � s� C

X
���

r�s� C
X
�<�

r�s�

D .s� � r�/.r˛ � 1/ ��� (5.4)

as claimed. This concludes the proof in absence of an infinite s.
Now let us assume there exists a unique �� 2 za˛ such that s�� D C1. As we

assume that (i) and (ii) are not satisfied, we must have r�� D 1. If � ¤ �� and
we take z 2 zC�, we only need to pay attention to factor (5.3) for � D ��, and in
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fact equation (5.3) remains valid, hence Y˛.z/ D t˛;��
v� CO.�v�C1/ with the same

expression for v� and the same discussion for the (non-)vanishing of t˛;�. Notice
that by definition of the order, we must have �� D max.za˛/, so �� does not appear
in��. If z 2 zC�� , factor (5.2) is absent in Y˛.z/ and the other factors for � ¤ �� are
as in (5.3). But, as �� only appears in v� via the first term of the first line of (5.4),
which can be consistently set to 0 since r�� D 1, the formula for v� remains valid.

Remark 5.5. Notice that if (iv) does not hold, i.e., any finite s� is coprime to r�, the
condition r�

s�
D

r�
s�

is equivalent to .r�; s�/D .r� ; s�/. In that case, condition (iii) can
be replaced by a more symmetric one:

(iii0) there exist distinct �; � 2 za˛ such that s�, s� are finite, .r�; s�/ D .r� ; s�/
and t r�� D t

r�
� .

5.2. Correlators, master loop equations and topological recursion

Let C D .C; x; y/ be a spectral curve with normalisation � W zC ! C .

Definition 5.6. A fundamental bidifferential of the second kind on C is an element

B 2 H 0
�
zC � zC IK�2

zC
.2�/

�S2
with biresidue 1 on the diagonal � � zC � zC , where K zC is the sheaf of differentials
on zC .

A crosscap differential on C is the data of a (possibly empty) divisor D on zC n za
and

q 2 H 0. zC IK zC .D C za//

such that
8˛ 2 a;

X
�2za˛

Res
zD�

q.z/ D 0:

Definition 5.7. A family of correlators is a family of multidifferentials

! D .!g;n/g2 12N;n>0

on zC such that !0;1 D zy dzx, !0;2 is a fundamental bidifferential of the second kind
on C , ! 1

2 ;1
is a crosscap differential, and for 2g � 2C n > 0,

!g;n 2 H
0
�
zC nI .K zC .�za//

�n
�Sn

:

It satisfies the projection property if for 2g � 2C n > 0,

!g;n.z1; zŒ2;n�/ D
X
�2za

Res
zD�

�Z z

�

!0;2.�; z1/

�
!g;n.z; zŒ2;n�/: (5.5)



Higher Airy structures and topological recursion for singular spectral curves 65

Note that (5.5) is automatically satisfied for .g;n/D .0;2/. Differentials satisfying
the projection property cannot have residues, and if they are holomorphic, they must
vanish. We can always assume by taking smaller neighbourhoods that the divisor D
of the crosscap differential is supported outside

F
˛2a
zU˛ .

Definition 5.8. Let ! be a family of correlators, and i � 1, g 2 1
2
N and n � 0. The

genus g, i -disconnected, n-connected correlator is defined by

Wg;i;n.zŒi�IwŒn�/ WD
X
L`Œi�F

L2LNLDŒn�
iC
P
L.gL�1/Dg

Y
L2L

!gL;jLjCjNLj.zL; wNL/:

We define W 0g;i;n by the same formula, but omitting any summand containing
some !0;1.

If i 2 Œr˛�, we let ~i W zU
.i/
˛ ! V˛ be the smooth curve obtained by taking the fibered

product of i copies of zxW zU 0˛ ! C, deleting the big diagonal �.i/, and quotienting by
the (free) action of Si . Points in zU .i/˛ are exactly subsets of cardinality i of f˛.z/ for
some z 2 zU 0˛ . We have natural holomorphic maps

. zU 0˛/
i
n�.i/

qi
�! zU .i/˛

xi
�!V 0˛;

where qi forgets the order of elements of an i -tuple and

xi .¹z1; : : : ; znº/ D zx.z1/ D � � � D zx.zi /:

Let Ii W zU i˛ n�
.i/ ! zC i be the natural inclusion. We introduce

E.i/˛Ig;n WD
.xiqi /�
i Š

I�i .Wg;i;n/ 2 H
0
�
V 0˛ �

zC nIK˝i
V 0˛
�K zC .�za/

�n
�Sn

;

QE.i/˛Ig;n WD zx
�E.i/˛Ig;n;

where all operations do not concern the last n variables. More concretely,

E.i/˛Ig;n.x0I zŒn�/ D
X

Z�zx�1.x0/\ zU˛
jZjDi

Wg;i;n.ZI zŒn�/;

QE.i/˛Ig;n.z0I zŒn�/ D
X

Z�f˛.z0/
jZjDi

Wg;i;n.ZI zŒn�/:
(5.6)

The symmetry factor i Š disappeared since Wg;i;n is symmetric in its i first vari-
ables. Note that reading (5.6) in the local coordinate �0 of z0 2 zU 0� each term may
be multivalued (i.e., fractional powers of �.z0/ could appear), however the sum is
single-valued as it is the pullback along zx of a 1-form on V 0˛ .
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Definition 5.9. We say that a family of correlators satisfies the master loop equations
if for any g 2 1

2
N and n � 0 such that 2g � 2 C .n C 1/ > 0, for any ˛ 2 a and

i 2 Œr˛�, any � 2 za˛ , when z0 2 zC 0� approaches �, we have

rX̨
iD1

zE.i/˛Ig;n.z0I zŒn�/.�!0;1.z0//
r˛�i D O.��1Cv�C.r��1/.r˛�1/.d�/r˛ /:

The relevance of this notion comes from the fact that the master loop equation can
be solved by the topological recursion.

Proposition 5.10. Assume that none of conditions (i), (ii), (iii), and (iv) appearing
in Lemma 5.4 are satisfied. Then, if ! is a family of correlators satisfying the master
loop equation (Definition 5.9) and the projection property (Definition 5.7), we must
have for any g 2 1

2
N and n � 0 such that 2g � 2C .nC 1/ > 0,

!g;nC1.z0; zŒn�/

D

X
˛2a

X
�2za˛

Res
zD�

� X
Z�f0˛.z/

K.1CjZj/� .z0I z;Z/W
0
g;1CjZj;n.z; ZI zŒn�/

�
; (5.7)

where for i � 2 we have introduced the i -th recursion kernel for jZj D i � 1

K.i/� .z0I z;Z/ WD �

R z
�
!0;2.�; z0/Q

z02Z..zy.z
0/ � zy.z//dzx.z//

: (5.8)

Proof. The proof is similar to [45, Theorem 7.6.5], the only difference being the order
of the pole in the master loop equation. For completeness, we include the argument
here. By definition,

W 0g;1;n D !g;nC1:

By the projection property and Definition 5.3,

!g;nC1.z0; zŒn�/ D
X
˛2a

X
�2za˛

Res
zD�

�Z z

�

!0;2.�; z0/

�
W 0g;1;n.zI zŒn�/

D �

X
˛2a

X
�2za˛

Res
zD�

K.r˛/� .z0I f˛.z//W
0
g;1;n.z0I zŒn�/

� Y˛.z/ � .dzx.z//.r˛�1/; (5.9)

where we noticed that

K.r˛/� .z0I f˛.z// D �

R z
�
!0;2.�; z0/

Y˛.z/.dzx.z//.r˛�1/
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always considering z 2 f˛.z/ as the first element of the set. Let ˛ 2 a, and use the
combinatorial identity [45, Lemma 7.6.4], which states thatX

¹zº�Z�f˛.z/

W 0g;jZj;n.ZI zŒn�/
Y

z02f˛.z/nZ

..zy.z0/ � zy.z//dzx.z//

D

rX̨
iD1

zE.i/˛Ig;n.zI zŒn�/.�!0;1.z//
r˛�i :

Isolating the term Z D ¹zº and substituting in (5.9), we obtain

!g;nC1.z0; zŒn�/

D

X
˛2a

X
�2za˛

Res
zD�

K.r˛/� .z0I f˛.z//

�
�

rX̨
iD1

QE.i/˛Ig;n.zI zŒn�/.�!0;1.z//
r˛�i

C

X
¹zº�Z�f˛.z/

W 0g;jZj;n.ZI zŒn�/
Y

z02f˛.z/nZ

..zy.z0/ � zy.z//dzx.z//
�

D

X
˛2a

X
�2za˛

Res
zD�

� X
¹zº�Z�f˛.z/

K.jZj/� .z0IZ/W
0
g;jZj;n.ZI zŒn�/

�
: (5.10)

By Lemma 5.4 and the assumption, we know that for z 2 zC 0� approaching �

Y˛.z/.dzx.z//r˛�1 � t˛;��
v�C.r��1/.r˛�1/ .d�/r˛�1

for some non-zero scalar t˛;�. Since the numerator of the recursion kernel vanishes at
order 1 at z D �, the master loop equation implies that the first term inside the bracket
of (5.10) is O.d�/ hence does not contribute to the residue. Besides, the contribution
of the second sum can be simplified by observing that

K.jZj/� .z0IZ/ D K
.r˛/
� .z0I f˛.z//

Y
z02f˛.z/nZ

..zy.z0/ � zy.z//dzx.z//:

Redefining Z by removing z from it, we obtain the desired formulas.

Remark 5.11. From the proof, we see that if one of conditions (i) and (ii) appearing
in Lemma 5.4 is satisfied, the recursion kernel is ill-defined as the denominator van-
ishes identically in the neighbourhood of some �. Besides, if one of conditions (iii)
or (iv) is satisfied, the same thing could occur or at least the order of vanishing of the
denominator is finite but higher than the one specified by Definition 5.9. In the latter
case, one can still ask for the analogue of Proposition 5.10 simply by modifying the
master loop equation to require that the first sum in (5.10) is O.d�/.
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We note that the right-hand side of (5.7) involves only !g0;n0 with 2g0 � 2 C
n0 < 2g � 2C .nC 1/. For a fixed !un D .!0;1; ! 1

2 ;1
; !0;2/, there exists at most one

way to complete it into a system of correlators satisfying the master loop equation
and the projection property: the !g;n are then determined by (5.7) inductively on
2g � 2C n > 0. However, such a system of correlators may actually fail to exist at
all. Indeed, (5.7) gives a non-symmetric role to z0 compared to z1; : : : ; zn, therefore
the !g;nC1.z0; : : : ; zn/ that (5.7) compute may fail to be symmetric, and so would not
respect Definition 5.7.

5.3. Abstract loop equations

We now address the aforementioned problem of existence of the solution to the master
loop equations, thanks to the results obtained in Section 4. We first introduce a seem-
ingly different notion of “abstract loop equations” valid in the setting of Section 5.1.
It will turn out that they give the right generalisation of “abstract loop equations”
proposed in [13] for smooth spectral curves. We will show that, under admissibility
conditions on the spectral curves that pertain to our constructions of Airy structures in
Section 2, the abstract loop equations have a solution satisfying the projection prop-
erties, and imply the master loop equation. Therefore, this solution must be given by
the topological recursion formula (5.7), and this proves a posteriori that this definition
is well-posed, i.e., it produces inductively only multidifferentials that are symmet-
ric under permutations of all their variables. A direct proof of symmetry by residue
computations on zC seems rather elusive.

Let C be a spectral curve as in Section 5.1. We introduce integers d˛.i/ for each
˛ 2 a and i 2 Œr˛�, matching Lemma 3.6. If i 2 Œr˛�, we first decompose it into i D
rŒ�/ C i 0 for the unique � 2 za˛ such that rŒ�/ < i � rŒ��. Then, i 0 2 Œr�� and we have

d˛.i/ WD �
js�.i 0 � 1/

r�

k
� sŒ�/ C ıi 0;1: (5.11)

Definition 5.12. We say that a family of correlators satisfies the abstract loop equa-
tions if for any g 2 1

2
N and n � 0 such that 2g � 2C .nC 1/ > 0, for any ˛ 2 a and

i 2 Œr˛� when x0 ! x.˛/, we have

E.i/˛Ig;n.x0I zŒn�/ D O
�
x
�.d˛.i/�1�ıi;1/
0

�dx0
x0

�i�
: (5.12)

This condition is equivalent to the property that, for any � 2 za˛ , we have when z0 2
zC 0� approaches �

zE.i/˛Ig;n
�
z0I zŒn�/ D O

�
�
�r�.d˛.i/�1�ıi;1/
0

�d�0
�0

�i�
:
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Proposition 5.13. Assume that none of conditions (i), (ii), (iii), (iv) appearing in
Lemma 5.4 are satisfied. Then, the abstract loop equations imply the master loop
equations.

Proof. We treat the case where s� is finite for all � 2 a. The case where there could
exist �˛;� 2 za˛ (which is then unique) such that s�˛;� D C1 is left as exercise to
the reader.

For each ˛ 2 a and i 2 Œr˛�, the abstract loop equations imply that for any � 2 za˛ ,
we have when z0 2 zU 0� approaches �

zE.i/˛Ig;n.z0I zŒn�/.�!0;1.z//
r˛�i D O.��r�.d˛.i/�1�ıi;1/�iC.s��1/.r˛�i/.d�/r˛ /:

Comparing with Definition 5.9, the result will be proved after we justify that

p�.i/ WD � r�.d˛.i/ � 1 � ıi;1/ � i C .s� � 1/.r˛ � i/

� .�1C v� C .r� � 1/.r˛ � 1//

is always nonnegative. We recall the definition of v� in (5.1):

v� D .s� � r�/.r˛ � 1/ � rŒ�/s� C sŒ�/r�:

We decompose i D rŒ�/ C i 0 with the unique � 2 za˛ such that rŒ�/ < i � rŒ�� and
i 0 2 Œr��, and we denote �˛ WD min za˛ . Inserting the definition of d˛.i/ from (5.11),
we obtain

p�.i/ D s�.1 � i C rŒ�//C r�
�
1C

js�.i 0 � 1/
r�

k
C sŒ�/ � sŒ�/ � ı���˛ıi 0;1

�
:

We are going to use often the inequality

bxc > x � 1: (5.13)

Checking nonnegativity of p�.i/ is done by a case discussion.

• If � D �, this becomes

p�.i/ D s�.1 � i
0/C r�

�
1C

js�.i 0 � 1/
r�

k
� ı���˛ıi 0;1

�
:

For i 0 D 1 and � � �˛ , we get p�.i/D 0. For i 0 D 1 and �D �˛ , we get p�.i/D

r�˛ > 0. For i 0 � 2, using (5.13) yields directly p�.i/ > 0.

• If � � �, we have

p�.i/ D s�.1 � rŒ�;�/ � i 0/C r�
�
1C

js�.i 0 � 1/
r�

k
C sŒ�;�/ � ıi 0;1

�
:
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For i 0 D 1, this simplifies into

p�.i/ D �s�rŒ�;�/ C r�sŒ�;�/:

By definition of the order, for all � 2 Œ�;�/, we have r�
s�
�
r�
s�

, therefore p�.i/� 0.
For i 0 � 2, we can use s�

r�
�

s�
r�

and (5.13) and obtain p�.i/ > 0.

• If � � �, we rather have

p�.i/ D s�.1C rŒ�;�/ � i 0/C r�
�
1C

js�.i 0 � 1/
r�

k
� sŒ�;�/ � ı���˛ıi 0;1

�
:

For i 0 D 1 and � D �˛ , this simplifies to

p�.i/ D s�rŒ�/ � r�sŒ�/ C r�;

and thanks to the inequality r�
s�
�

r�
s�

for all � 2 Œ�/, we deduce p�.i/ � r� > 0.
For i 0 D 1 and � � �˛ , we have

p�.i/ D s�rŒ�;�/ � r�sŒ�;�/:

Due to the inequality r�
s�
�

r�
s�

for all � 2 Œ�; �/, we have again p�.i/ � 0. For
i 0 � 2, we use inequality (5.13) to write

p�.i/ > s�.1C rŒ�;�/ � i 0/C r�
�s�.i 0 � 1/

r�
� sŒ�;�/

�
> r�.i

0
� 1/

�s�
r�
�
s�

r�

�
C rŒ�;�/s� � sŒ�;�/r�;

and due to the ordering we find again p�.i/ > 0.

Remark 5.14. In the proof we see that for any ˛ 2 a, if jza˛j > 1, there exists � 2 za˛
and i 2 Œr˛� such that p�.i/ D 0. Therefore, we do use all the vanishing provided by
the abstract loop equations to derive the master loop equations.

Combining with Proposition 5.10, we obtain the following result.

Proposition 5.15. Assume that none of conditions (i), (ii), (iii), (iv) appearing in
Lemma 5.4 are satisfied. For a fixed .!0;1; !0;2; !1; 12 /, the topological recursion (5.7)
gives the unique – if it exists, i.e., if the result is symmetric in all variables – solution
to the abstract loop equations.

The notion of abstract loop equation was first introduced [10, 13] for smooth
curves with simple ramifications and was shown therein to be a mechanism implying
directly the topological recursion. This was extended to higher-order ramifications on
smooth curves having zy holomorphic near a in [9,15,45], and to the more general case
where ydx is holomorphic near a in [9]. The novelty of Propositions 5.10 and 5.13
here is the treatment of possibly singular curves.
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5.4. Topological recursion for admissible spectral curves

In this subsection, we express the abstract loop equations in a more algebraic way,
which will make the bridge to Airy structures. The converse route was anticipated in
Section 4.

Let C be a spectral curve. We can attach to it a local spectral curve matching the
definitions in Section 4.2. Namely, we let

zC loc
D

G
�2za

zC loc
� ; zC loc

� WD Spec CJ�K:

We recall for each ˛ 2 a and ramification point � 2 za˛ above ˛, we have a local
coordinate � such that

zx. �z / D x.˛/C �.z/
r� :

For each � 2 za, define zC loc0
� WD Spec C..�// and let

L� WD H
0
�
zC loc0
� IK zC loc0

�

�
Š C..�//d�

be a copy of the space of formal Laurent series, and

L D H 0
�
zC loc0
IK zC loc0

�
Š

M
�2za

L�:

We denote by Loc�WH 0. zU IK zU .�za//! L� the linear map associating to a mero-
morphic differential its all-order Laurent series expansion near � using the local
coordinate � in zU�, and Loc D

L
�2za Loc�. We define elements d��

k
2 L, indexed

by � 2 za and k � 0
d��
k

� �
�

�
D ı�;� �

k�1 d�:

We introduce the standard bidifferential of the second kind on zU , that is

!std
0;2

�
�1 �2
z1 z2

�
WD

ı�1;�2 d�.z1/d�.z2/
.�.z1/ � �.z2//2

:

Let now ! be a family of correlators on C . We can encode the correlators !g;n
with 2g � 2C n � 0 by the following Laurent series expansion:

Loc.!0;1/ D
X
�2za
k>0

F0;1
� �
�k

�
d��
k
;

Loc.! 1
2 ;1
/ D

X
�2za

�
Q� d��0 C

X
k>0

F 1
2 ;1

� �
�k

�
d��
k

�
;

Loc˝2.!0;2 � !std
0;2/ D

X
�1;�22za
k1;k2>0

F0;2
� �1 �2
�k1 �k2

�
d��1
k1

d��2
k2
:

(5.14)
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Using the fundamental bidifferential of the second kind, we introduce another family
of differentials d��

�k
, now globally defined on zC and indexed by � 2 za and k > 0

d��
�k
.z/ D Res

z0D�

�Z z0

�

!0;2.�; z/

�
d�.z0/

.�.z0//kC1
: (5.15)

Notice that it is such that for any �; � 2 za,

Loc�.d�
�

�k
/ D

ı�;�d�
�kC1

C

X
l>0

F0;2
� � �
�k �l

�
k

d��l :

Assuming that ! satisfies the projection property, by symmetry we can apply this
property to each variable to obtain the existence of a finite decomposition for 2g �
2C n > 0

!g;n.z1; : : : ; zn/ D
X

�1;:::;�n2za
k1;:::;kn>0

Fg;n
� �1 ��� �n
k1 ��� kn

� nY
iD1

d��i
�ki
.zi /; (5.16)

where Fg;n
�
�
k
�

are scalars.

Definition 5.16. The partition function Z associated to ! and satisfying the projec-
tion property is defined as

Z WD eF ; F D
X

g2 12N; n�1
2g�2Cn>0

X
�1;:::;�n2za
k1;:::;kn>0

„g�1

nŠ
Fg;n

� �1 ��� �n
k1 ��� kn

� nY
iD1

x
�i
ki
:

We now would like to translate the abstract loop equations on ! into constraints
for its partition function. For this purpose, we introduce for each ˛ 2 a a copy W˛Ii;k
of the differential operators in equation (2.14) indexed by i 2 Œr˛� and k 2 Z forming
a representation of the W.glr˛ /-VOA using as twists permutations �˛ which is a
product of disjoint cycles of respective orders .r�/�2za˛ . They are described in terms
of the Heisenberg generators indexed by � 2 za and k 2 Z

J
�

k
D

8̂̂<̂
:̂
„@x�

k
if k > 0;

„
1
2Q� if k D 0;

�kx
�

�k
if k < 0;

where we use
Q� D Res

zD�
! 1
2 ;1
.z/
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coming from the crosscap differential. Then, we construct the dilaton shift and the
change of polarisation

yT D exp
�X
�2za
k>0

�
„
�1F0;1

� �
�k

�
C „

� 12F 1
2 ;1

� �
�k

��J�
k

k

�
;

ŷ D exp
� 1
2„

X
�;�2za
k;l>0

F0;2
� � �
�k �l

�J�
k
J �
l

kl

�
:

Definition 5.17. To a spectral curve C equipped with a crosscap differential ! 1
2 ;1

and a fundamental bidifferential of the second kind !0;2, we associate the system of
differential operators indexed by ˛ 2 a, i 2 Œr˛� and k 2 Z

H˛Ii;k WD ŷ yT �
�˛Wi;k � yT

�1 ŷ�1;

where W �
i;k

is as in equation (2.14), and �˛ is the monodromy permutation at ˛.
We also introduce the set

	 WD ¹.˛; i; k/ j ˛ 2 a; i 2 Œr˛�; k � d˛.i/ � ıi;1º:

Proposition 5.18. Assume that none of conditions (i), (ii), (iii), (iv) appearing in
Lemma 5.4 are satisfied, and let ! be a system of correlators satisfying the projec-
tion property. Then, the abstract loop equations for ! are equivalent to the following
system of differential equations for its partition function:

8.˛; i; k/ 2 	; e�FH˛Ii;ke
F
� 1 D 0: (5.17)

Proof. If jaj D 1, this is the computation done in Section 4.4. Given the formalism
that we introduced, it is straightforward to adapt it to handle several ˛s, where H˛Ii;k
now form a representation of the direct sum over ˛ 2 a of the W.glr˛ /-VOAs.

It is now easy to combine the construction of Airy structures in Theorem 2.11 with
Propositions 5.10 and 5.13 to obtain our second main result. We recall that we have
defined

t� D �
1

r�
F0;1

� �
�s�

�
:

Definition 5.19. We say ˛ 2 a is regularly admissible if

• C is irreducible locally at ˛, that is, jza˛j D 1.

• zy is holomorphic near ˛ and dzy.˛/ ¤ 0.

In that case, in all the previous definitions and constructions in the neighbour-
hood zU˛ , we replace zy.z/ by zy.z/ � zy.˛/. In particular, we take s˛ D r˛ C 1, and
the value of zy.˛/ plays absolutely no role in all the results we have mentioned.
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Definition 5.20. We say ˛ 2 a is irregularly admissible if

• for any � 2 za˛ such that r� > 1, zy has a pole at � but zydzx is regular at �.
In particular, this imposes s� 2 Œ1; r�/;

• for any distinct �; � 2 za˛ such that .r�; s�/ D .r� ; s�/, we have t r�� ¤ t
r�
� ;

• if jza˛j > 1, there exist distinct �C; �� 2 za˛ such that r�˙ D �1 mod s�˙ and
r�C
s�C
�
r��
s��

, and for any�2 za˛ n ¹��;�Cº, we have s�D 1 and
r�C
s�C
� r� �

r��
s��

;

• if jza˛j D 1, then r� D ˙1 mod s� for � 2 za˛ .

These conditions always imply that for any �, we have gcd.r�; s�/ D 1; in other
words, the plane curve . zC ; zx; zy/ is locally irreducible at �. Here, the second condition
avoids pathology (iii) in Lemma 5.4 and the next results. The third condition is then
equivalent to avoiding pathology (iv) in Lemma 5.4, because r�

s�
D

r�
s�

and .r�; s�/
coprime, .r� ; s�/ coprime imply that .r�; s�/ D .r� ; s�/. The third and fourth con-
ditions match those in Theorem 2.11 if d > 1, and the case d D 1 corresponds to
Theorem 2.10.

Definition 5.21. We say ˛ 2 a is exceptionally admissible if

• there exists a unique �� 2 za˛ such that s�� D C1, and it has r�� D 1;

• the three first properties in Definition 5.20 that do not involve �� are satisfied;

• there exists �C 2 za˛ n ¹��º such that r�C D �1 mod s�C ;

• for any � 2 za˛ n ¹��; �Cº, we have s� D 1 and
r�C
s�C
� r�.

Allowing infinite s, the first condition guarantees that we avoid pathologies (i)
and (ii) in Lemma 5.4, which make the denominator of the recursion kernel be identic-
ally zero in some open set. The last two conditions match those in Theorem 2.11.

Definition 5.22. A spectral curve C D .C; x; y/ is admissible if all ˛ 2 a are either
regularly, or irregularly, or exceptionally admissible. The tuple .r�; s�/�2za˛ is called
the type of the ramification point ˛ 2 a.

Theorem 5.23. Let C be an admissible spectral curve equipped with a fundamental
bidifferential of the second kind !0;2 and with a crosscap differential ! 1

2 ;1
. Then

there exists a unique way to complete .!0;1; ! 1
2 ;1
; !0;2/ into a system of correlators

! satisfying the projection property and the abstract loop equations (or the master
loop equations). Moreover, !g;n is computed by the topological recursion (5.7) by
induction on 2g � 2 C n > 0, and the result of this formula is symmetric in all its
variables. The coefficients Fg;n determined by its decomposition are the coefficients of
expansion of the partition function of the Airy structure introduced in Definition 5.17.
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For smooth curves with simple ramifications – i.e., zC D C , jza˛j D 1 and r˛ D 2
for all ˛ 2 a – the symmetry is proved in [36, Theorem 4.6]. For admissible smooth
curves, Theorem 5.23 is proved in [9, Theorem 5.32]. For singular curves, the admiss-
ibility condition we have adopted is not far from being optimal for this formulation
of the abstract loop equation/formulas like (5.7). It may not be impossible to define
a topological recursion for more general spectral curves, but either formula (5.7)
will have to be different or the exponents in the master loop equations/abstract loop
equations should be increased, in a consistent way so that there still exist a unique
symmetric solution.

We obtained Theorem 5.23 by exploiting the dictionary established in Section 4
and using Theorem 2.14. It is therefore natural to ask what the analogous statement
of Theorem 2.13 (with the addition of Theorem 2.15) in the setting of spectral curves
should be. For this we make the following observation.

Proposition 5.24. Again assume that none of conditions (i), (ii), (iii), (iv) appearing
in Lemma 5.4 are satisfied, and let ! be a system of correlators satisfying the projec-
tion property. Then, ! satisfies the abstract loop equations for g D 02 if and only if
the associated partition function satisfies

8.˛; i; k/ 2 	; e�FH˛Ii;ke
F
� 1 D o.„

1
2 /: (5.18)

From this it becomes clear how to translate Theorem 2.13.

Definition 5.25. We say ˛ 2 a is admissible in genus 0 if

• there is at most one �� 2 za˛ for which s�� D C1. If such a �� exists, then
r�� D 1;

• for any distinct �; � 2 za˛ such that .r�; s�/ D .r� ; s�/, we have t r�� ¤ t
r�
� ;

• r� D ˙1 mod s� for all � 2 za˛;

• for all �1 ¤ �2 with s�i > 2 such that either

r�1 D 1 mod s�1 and r�2 D 1 mod s�2

or
r�1 D �1 mod s�1 and r�2 D �1 mod s�2

one has b r�1
s�1
c ¤ b

r�2
s�2
c;

• if there are pairwise distinct �1; �2; �3 2 za˛ with b r�1
s�1
c D b

r�2
s�2
c D b

r�3
s�3
c, then

there is an m 2 ¹1; 2; 3º for which s�m D 1.

A spectral curve C D .C; x; y/ is admissible in genus 0 if all ˛ 2 a are.

2With this we mean that for any n � 2, ˛ 2 a and i 2 Œr˛�, equation (5.12) is satisfied for
g D 0 as x0 ! x.˛/.



G. Borot, R. Kramer, and Y. Schüler 76

Theorem 5.26. If C is a spectral curve admissible in genus 0, equipped with a fun-
damental bidifferential of the second kind !0;2, then there exists a unique way to
complete .!0;1; !0;2/ into a system of correlators .!0;n/n�1 satisfying the projection
property and the abstract loop equations (or the master loop equations) for g D 0.
Moreover, !0;n is computed by the topological recursion (5.7) by induction on n > 0,
and the result of this formula is symmetric in all its variables. The F0;n determined by
its decomposition are the free energies solving (5.18).

Clearly, not every curve admissible in genus 0 is admissible, and there is indeed
a good reason for this definition. Suppose we are in the setting of Theorem 5.26. Then
given a crosscap differential ! 1

2 ;1
, one could ask whether one can extend the family

.!0;1; !0;2; !0;3; : : : ; ! 1
2 ;1
/ to a system of correlators ! satisfying the abstract loop

equations for all g � 0. Doing explicit calculations, we will observe in Section 6.1.3
that this is not always possible without at least imposing certain conditions on the
choice of ! 1

2 ;1
.

5.5. Decoupling of exceptional components

If we erase some or all of the components of an exceptionally admissible local spectral
curve C indexed by the �� 2 a such that s�� D1, we still obtain an admissible local
spectral curve C 0. We prove below a decoupling result if !0;2 has no cross-terms with
these components and ! 1

2 ;1
vanishes on these components. This decoupling means

that the computing !g;n on C and restricting to C 0 gives the same result as restricting
.!0;1; !0;2; ! 1

2 ;1
/ to C 0 and then computing !g;n by the topological recursion on C 0.

Proposition 5.27. Let .C; x; y/ be an exceptionally admissible spectral curve equip-
ped with a fundamental bidifferential of the second kind !0;2 and with a crosscap
differential ! 1

2 ;1
.

Let a0 be a non-empty subset of exceptionally admissible ramification points, and
denote za0 the set of �� 2 za such that �� 2 za˛ for some ˛ 2 a0 and s�� D1. Assume
that for any �� 2 za0 and � 2 za n za0, we have

.Loc�� ˝ Loc�/.!0;2/ D 0; Loc��.! 1
2 ;1
/ D 0:

Then, if we denote by ! the outcome of topological recursion and

Loc0 D
G

�2zanza0

Loc�;

the Loc0-projection of the system of correlators ! obtained from .C; x; y; !0;2; !1; 12
/

by the topological recursion (5.7), satisfies the topological recursion on the local
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spectral curve
. zC loc/0 D

G
�2zanza0

zC�

equipped with the restriction of x, y, !0;2, ! 1
2 ;1

onto . zC loc/0.

Proof. We detail the proof in the case of a single ramification point with s�� D 1.
The general case follows because topological recursion is local. It suffices to work
from the start with the normalised local spectral curve attached to .C; x; y/. We write
zC loc
� for the connected component of zC loc associated to �� and zC loc

C for all other
components.

First, let us prove all !g;n with exactly one argument in zC loc
� are zero. We will

prove this by induction on the Euler characteristic. The base cases hold, as !0;1 and
! 1
2 ;1

vanish on zC loc
� and !0;2 does not have cross-terms. For the induction step, let us

recall the topological recursion formula (5.7):

!g;nC1.z0; zŒn�/ D
X
˛2a

X
�2za˛

Res
zD�

� X
¹zº�Z�f˛.z/

K.jZj/� .z0IZ/W
0
g;jZj;n.ZI zŒn�/

�
;

K.m/� .z0I zŒm�/ WD �

R z
�
!0;2.�; z0/Qm

lD2..zy.zl/ � zy.z1//dzx.z1//
:

In this case, a D ¹0º, and za0 D ¹0 2 zC loc
C ; 0 2

zC loc
� º.

Let us analyse this formula with z0 2 zC loc
� and all zi 2 zC loc

C for i 2 Œn�. First,
because the !0;2 does not contain cross-terms, we must have z 2 C�, so also �D 0 2
zC loc
� . Because zxj zC loc

�
is injective, f0.z/ contains no other point in zC loc

� . Hence for all
terms in the sum,Z \ zC loc

� D ¹zº, and by the induction hypothesis, all W 0.ZIzŒn�/ are
zero (they contain a factor !g0;n0 with 2g0 � 2C n0 < 2g � 2C n and one argument
in zC loc

� ).
Now, we will prove the proposition using a similar induction. The base cases, !0;1

and !0;2 (and the trivial ! 1
2 ;1

), do indeed not mix several components.
For the induction step, we again look at the topological recursion formula. Let us

look at the terms contributing in the case z0 and all zŒn� are in zC loc
C . As before, z 2 zC loc

C .
Furthermore, f0.z/ contains exactly one element, say �, in zC loc

� , so any Z contains at
most one such element. Any term in the sum not containing � also contributes to
the topological recursion on zC loc

C , and all terms including � must vanish by the first
part of this proof, as they have a factor !g0;n0 with exactly one argument, namely �,
in zC loc

� .
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6. Calculations for low 2g � 2C n

In this section, we calculate some of the first correlators in the unique way of The-
orem 5.23, but for not necessarily admissible spectral curves. In this generality, there
is no guarantee for the correlators to be symmetric, and we will find that indeed they
are not for certain choices of parameters. As correlators coming from Airy struc-
tures are symmetric by construction, these calculations give necessary conditions for
our collections of differential operators to form Airy structures. These conditions are
summarised in Section 2.3.4.

6.1. The standard case

Let us consider the spectral curve with a unique ramification point ˛ at which d
irreducible components labelled by za˛ D za intersect, and defined for � 2 za and z on
the �-th component of the normalisation by the formulas

x. �z / D z
r� ; y. �z / D �t� z

s��r� : (6.1)

We equip it with the bidifferential and the crosscap differential

!0;2
�
�1 �2
z1 z2

�
D ı�1;�2

dz1dz2
.z1 � z2/2

; ! 1
2 ;1
. �z / D

Q�dz
z

:

We assume that gcd.r�; s�/ D 1, and that for r�
s�
D

r�
s�

and � ¤ �, we must have

t
r�
� ¤ t

r�
� . The correlators for � D 2 � 2g � n D �1 are

!0;3.z1; z2; z3/ D
X
�2za

Res
zD�

X
z02f0.z/

K�.z1; z; z
0/

� .!0;2.z; z2/ !0;2.z
0; z3/C !0;2.z; z3/ !0;2.z

0; z2//;

! 1
2 ;2
.z1; z2/ D

X
�2za

Res
zD�

X
z02f0.z/

K�.z1; z; z
0/

� .!0;2.z; z2/ ! 1
2 ;1
.z0/C !0;2.z

0; z2/ ! 1
2 ;1
.z//;

!1;1.z1/ D
X
�2za

Res
zD�

X
z02f0.z/

K�.z1; z; z
0/

� .!0;2.z; z
0/C ! 1

2 ;1
.z/ ! 1

2 ;1
.z0//;

(6.2)

where

K�.z1; z; z
0/ D

R z
�
!0;2.�; z1/

.y.z/ � y.z0//dx.z/
:

In this section, we compute these correlators and show that the symmetry of !0;3
and ! 1

2 ;2
poses constraints on the parameters .r�; s�; t�; Q�/�2za. We also obtain
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similar constraints from partial calculation of !0;4. In the light of Proposition 5.24
and Theorem 5.26, the symmetry of !0;3 and !0;4 is necessary so that the family
of differential operators admits a partition function solving the associated system of
differential equations to leading order in „

1
2 . In the same way, Proposition 5.18 and

Theorem 5.23 tell us that additionally we need to take into account the symmetry
conditions for ! 1

2 ;2
which are necessary constraints to obtain Airy structures from the

construction presented in Section 2. These ideas will be used in Section 6.3 to prove
Propositions 2.16 and 2.17.

6.1.1. Genus zero. In this section, we calculate !0;3 and obtain constraints on the
parameters of the spectral curve (6.1) that are necessary for the symmetry of the cor-
relators !0;3 and !0;4.

Proposition 6.1. Assume r� and s� are coprime for all � 2 za. Then !0;3 is symmetric
if and only if the following holds:

(i) r� D ˙1 mod s� for all � 2 za.

(ii) For all �1 ¤ �2 with s�i > 2 such that either

r�1 D 1 mod s�1 and r�2 D 1 mod s�2

or
r�1 D �1 mod s�1 and r�2 D �1 mod s�2 ;

one has b
r�1
s�1
c ¤ b

r�2
s�2
c.

When these conditions are satisfied, then !0;3 is given by

!0;3
�
�1 �2 �3
z1 z2 z3

�
D

X
�

c�ı�1;�2;�3;�

t�r�

X
k1;k2;k3>0

k1k2k3 dz1dz2dz3
z
k1C1
1 z

k2C1
2 z

k3C1
3

ık1Ck2Ck3;s� ; (6.3)

where

c� WD

´
�r 0�; r� D r

0
�s� C 1;

r 0� C 1; r� D r
0
�s� C s� � 1:

(6.4)

Proposition 6.2. Assume conditions (i) and (ii) of Proposition 6.1 hold. Then !0;4
can only be symmetric if

(iii) For any distinct �1, �2, �3 with b
r�1
s�1
c D b

r�2
s�2
c D b

r�3
s�3
c, there is an m 2

¹1; 2; 3º for which s�m D 1.

Notice that the conditions from Propositions 6.1 and 6.2 are exactly the defining
properties of a curve admissible in genus 0, i.e., those curves for which we already
know that all .!0;n/n�1 computed by the topological recursion will be symmetric.
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Corollary 6.3. Let C be a spectral curve of type (6.1) equipped with the standard
bidifferential. Then the topological recursion formula applied to .!0;1; !0;2/ yields
a family of symmetric multidifferentials .!0;n/n�1 if and only if C is admissible in
genus 0.

Before we prove Propositions 6.1 and 6.2, we first give some more general con-
siderations for calculating the genus zero correlators.

Recalling equations (5.7) and (5.8), we see that the recursion kernel can be split
into factors coming from different irreducible components of the spectral curve. First,
note that in K.z1I z;Z/, we always need z1 and z to lie in the same irreducible com-
ponent, and then we have Z z

�

!0;2.�; z1/ D
zdz1

z1.z1 � z/
:

Because !0;2 in our current situation does not mix irreducible components, this shows
immediately that to get symmetric correlators, we need

!0;3
�
� � �
z1 z2 z3

�
D 0

unless � D � D �: if one (say �) is different from the other two, we can use the
recursion with respect to its variable and get z 2 zC�, so both terms in (6.2) would
involve an !0;2 between two different irreducible components.

This vanishing can then be used to calculate !0;4 with arguments in exactly three
different irreducible components. All terms involving K.2/ would also involve a van-
ishing !0;3, while the same argument as for !0;3 above shows that the contribution
ofK.3/ to such !0;4 should vanish – it also involves only !0;2. In fact, this same argu-
ment could be applied to !0;4

�
� � � �
z1 z2 z3 z4

�
(we only need one irreducible component

to be different from all others), but this turns out not to give a new constraint, so we
omit it here.

Remark 6.4. This argument can be used inductively to show that all!0;n with exactly
one argument on a given irreducible component must vanish. This is analogous to the
proof of Proposition 5.27, but also uses that all arguments of the recursion kernel must
couple to a different correlator, as we restrict to genus zero. However, in general the
recursive computation of these correlators does require K.m/ of order m up to the
degree of zx, and therefore becomes quite complicated.

For the remainder of this section, we restrict to recursion kernels coupled to !0;2’s,
which is sufficient for our calculations. We also assume z1 2 zC�. From the shape of
the recursion kernel, we obtain several possible contributions (combining factors from
the kernel and the correlators):
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(1) There will always be one term

zdz1
z1.z1 � z/

dzdzm
.z � zm/2

with zm 2 zC�.

(2) For any other zm 2 zC�, we get a contribution

#
am
�

r�t�.#
ams�
� � 1/zs��1

dzm
.#
am
� z � zm/2

;

where #� is a primitive r�-th root of unity and we need to sum over all subsets
¹amº � Œr� � 1� of size determined by the number of zm 2 zC�.

(3) For any � ¤ � and zm 2 zC� , we get a contribution

#
bm
� zr�=r��1

r�.t�#
bms�
� zr�s�=r��1 � t�zs��1/

dzm
.#
bm
� zr�=r� � zm/2

and we need to sum over all subsets ¹bmº � Œr� � of size determined by the
number of zm 2 zC� .

We need to take the series expansion of each of these near z D 0. For (1), this is

zdz1
z1.z1 � z/

dzdzm
.z � zm/2

D dzdz1dzm
X
`;k�1

kz�`�11 z�k�1m z`Ck�1:

The summations for cases (2) and (3) get quite complicated for general sizes of the
subset, but for size one, they are computable. For case (2), we get

r��1X
aD1

#a�

r�t�.#
as�
� � 1/zs��1

dzm
.#a�z � zm/

2

D
dzm
r2�t�

r��1X
aD1

r��1X
`D0

`#
as�`
�

X
k�1

k#ak� z�k�1m zk�s�

D
dzm
r2�t�

X
k�1

r��1X
`D0

`.r�ır�js�`Ck � 1/kz
�k�1
m zk�s�

D
dzm
r�t�

X
k�1

�
`�.k/ �

r� � 1

2

�
kz�k�1m zk�s� ;

where `�.k/ is the unique ` 2 Œ0; r�/ such that r� j s�`C k.
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For case (3), there are three different subcases, depending on the sign of r�
s�
�
r�
s�

:

(3a) If r�
s�
D

r�
s�

, we get

r�X
bD1

#
bm
� zr�=r��1

r�.t�#
bms�
� zr�s�=r��1 � t�zs��1/

dzm
.#
bm
� zr�=r� � zm/2

D dzm
X
k�1

t
r��`�.k/�1
� t

`�.k/
�

t
r�
� � t

r�
�

k z�k�1m zk�s� :

(3b) If r�
s�
> r�

s�
, we get

r�X
bD1

#
bm
� zr�=r��1

r�.t�#
bms�
� zr�s�=r��1 � t�zs��1/

dzm
.#
bm
� zr�=r� � zm/2

D �
dzm
t�

X
k;`�1

r� js�.`�1/Ck

� t�
t�

�`�1
k z�k�1m z.s�.`�1/Ck/

r�
r�
�`s� :

(3c) If r�
s�
< r�

s�
, we get

r�X
bD1

#
bm
� zr�=r��1

r�.t�#
bms�
� zr�s�=r��1 � t�zs��1/

dzm
.#
bm
� zr�=r� � zm/2

D
dzm
t�

X
k;`�1

r� js�`�k

� t�
t�

�`�1
k z�k�1m z.k�`s�/

r�
r�
C.`�1/s� :

Proof of Proposition 6.1. We have already argued that in the symmetric case !0;3
vanishes unless all arguments are on the same component. Let us therefore first cal-
culate the value of !0;3 in exactly this case. If all arguments lie on zC�, we get
a contribution from case (1) and the one-argument version of case (2). Then taking
the residue, we obtain

!0;3
�
� � �
z1 z2 z3

�
dz1dz2dz3

D Res
zD0

�
dz

X
`2;k2�1

k2z
�`2�1
1 z

�k2�1
2 z`2Ck2�1

�
1

r�t�

X
k3�1

�
`�.k3/ �

r� � 1

2

�
k3z
�k3�1
3 zk3�s�

C dz
X

`3;k3�1

k3z
�`3�1
1 z

�k3�1
3 z`3Ck3�1

�
1

r�t�

X
k2�1

�
`�.k2/ �

r� � 1

2

�
k2z
�k2�1
2 zk2�s�

�
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D
1

r�t�
Res
zD0

dz
X

`;k2;k3�1

k2k3.`�.k2/C `�.k3/ � r� C 1/

� z�`�11 z
�k2�1
2 z

�k3�1
3 z`Ck2Ck3�s��1

D
1

r�t�

X
k1;k2;k3�1

k2k3.`�.k2/C `�.k3/ � r� C 1/

� z
�k1�1
1 z

�k2�1
2 z

�k3�1
3 ık1Ck2Ck3;s� :

For r� D 1, this expression vanishes and hence is symmetric. In the case r� > 1, we
know from [9, Proposition B.2] that for s� 2 Œr� C 1�, this is symmetric if and only
if r� D ˙1 mod s�. If however, r� > 1 and s� > r� C 1, it is easy to see that the
correlators can never be symmetric. Let us assume !0;3 is symmetric. Then for all
k1; k2; k3 > 0 satisfying k1 C k2 C k3 D s�, we must have

k2k3.`�.k2/C `�.k3/ � r� C 1/ D k1k3.`�.k1/C `�.k3/ � r� C 1/:

After plugging k1 D 1, k2 D r�, and k3 D s� � r� � 1 into the above equation, the
right-hand side vanishes and we obtain

r�.`�.s� � r� � 1/ � r� C 1/ D 0:

From this we deduce that `�.s� � r� � 1/ D r� � 1. This means that there must
exist such m that mr� D s� � r� � 1C s�.r� � 1/. This in turn implies that r� D 1
which contradicts our starting assumption. We therefore conclude that the symmetry
condition for !0;3

�
� � �
z1 z2 z3

�
is exactly captured by (i).

To show equation (6.3), recall that `�.k/ is the unique ` 2 Œ0; r�/ such that
r� j s�`C k. In other words, there is an m such that m.r 0�s� C "�/ D s�`�.k/C k.
Viewing this formula modulo s� shows that for k < s�

m D

´
k if "� D 1;

s� � k if "� D s� � 1:

From this, it follows easily that .`�.k2/C `�.k3/ � r� C 1/ D c� as k2; k3 < s�.
Now let us turn our attention to the case where the arguments !0;3 lie on two

different components. We will see that in this case the symmetry is controlled by con-
dition (ii). Let us first show that this condition is indeed necessary for the symmetry
of !0;3. So suppose there are � and � violating (ii), i.e., s�; s� > 2, b r�

s�
c D b

r�
s�
c and

either r� D 1 mod s� and r� D 1 mod s� or r� D �1 mod s� and r� D �1 mod s� .
After relabelling, we may also assume that r�

s�
�

r�
s�

. In the following, we will show
by explicit computation that in this case !0;3

�
� � �
z1 z2 z3

�
¤ 0. This however means

that !0;3 cannot be symmetric since !0;3
�
� � �
z3 z2 z1

�
is always vanishing.
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In the case r�
s�
D

r�
s�

, !0;3
�
� � �
z1 z2 z3

�
gets a contribution from case (1) and the

one-argument version of case (3a). Then taking the residue gives

!0;3
�
� � �
z1 z2 z3

�
dz1dz2dz3

D Res
zD0

dz
X

k1;k2;k3�1

k2k3z
�k1�1
1 z

�k2�1
2 zk1Ck2�1

�
t
r��`�.k/�1
� t

`�.k/
�

t
r�
� � t

r�
�

z�k3�1m zk3�s�

D

X
k1;k2;k3�1

t
r��`�.k3/�1
� t

`�.k3/
�

t
r�
� � t

r�
�

k2k3ık1Ck2Ck3;s�

� z
�k1�1
1 z

�k2�1
2 z

�k3�1
3 :

This is clearly non-vanishing since we assumed that s�; s� > 2.
If now r�

s�
> r�

s�
, the correlator gets a contribution from (1) and (3b) leading to

!0;3
�
� � �
z1 z2 z3

�
dz1dz2dz3

D �
1

t�
Res
zD0

dz
X

k1;k2;k3;`�1
r� js�.`�1/Ck3

k2k3 z
�k1�1
1 z

�k2�1
2 zk1Ck2�1

� t�
t�

�`�1
� z
�k3�1
3 z.s�.`�1/Ck3/

r�
r�
�`s�

D �
1

t�

X
k1;k2;k3;`�1
r� js�.`�1/Ck3

� t�
t�

�`�1
k2k3 z

�k1�1
1 z

�k2�1
2 z

�k3�1
3

� ı
k1Ck2C.s�.`�1/Ck3/

r�
r�
�`s�; 0

D �
1

t�

X
k1;k2;k3�1

X
`0�0

� t�
t�

�`�.k3/Cr�`0
k2k3 z

�k1�1
1 z

�k2�1
2 z

�k3�1
3

� ık1Ck2�a�;�.k3/C`0.r�s��r�s�/;0; (6.5)

where we set

a�;�.k/ WD �.s�`�.k/C k/
r�

r�
C .`�.k/C 1/s�: (6.6)

The key observation to make now is that a�;�.1/ > 1 under our assumptions on �
and �. Indeed, in the case r� D 1 mod s� and r� D 1 mod s� , we find that

a�;�.1/ D �r� C .r� � 1C s�/ D s� � 1 > 1; (6.7)

where we used that `�.1/ D b r�s� c D b
r�
s�
c. Similarly, if r� D �1 mod s� and r� D

�1 mod s� , an analogous calculation gives a�;�.1/D s� � 1 > 1. Hence, we find that
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the residue

Res
z1D0

Res
z2D0

Res
z3D0

z
a�;�.1/�1

1 z2z3!0;3
�
� � �
z1 z2 z3

�
D �

1

t�

X
`0�0

� t�
t�

�`�.1/Cr�`0
ı`0.r�s��r�s�/;0 D �

1

t�

� t�
t�

�`�.1/
is non-vanishing, telling us that !0;3

�
� � �
z1 z2 z3

�
¤ 0. This shows that condition (ii) is

indeed necessary to ensure the symmetry of !0;3.
Let us now finally argue why (i) and (ii) are also sufficient to ensure symmetry.

Indeed, our spectral curve is admissible in genus 0 if additionally condition (iii) of
Proposition 6.2 is satisfied. In this case, !0;3 computed by the topological recursion
must be symmetric by Theorem 5.26. Note now that condition (iii) is trivially satisfied
in the case d � 2. In the case d > 2, since!0;3

�
� � �
z1 z2 z3

�
can as well be computed after

restricting x, y, and !0;2 to the component zC� (a one-component spectral curve for
which (iii) is trivially satisfied), the correlator must be symmetric under permutation
of the arguments. Similarly, for�¤ � we can compute!0;3

�
� � �
z1 z2 z3

�
,!0;3

�
� � �
z1 z2 z3

�
,

etc. after restricting the input data to the two-component curve zC� t zC� for which (iii)
holds as well. Finally, if all arguments lie on different components �, �, �, we always
have !0;3

�
� � �
z1 z2 z3

�
D 0 which of course is symmetric. Thus, although we are not

imposing condition (iii) of Proposition 6.2 the correlator !0;3 is already symmetric
given that (ii) and (ii) hold.

Proof of Proposition 6.2. Suppose !0;4 is symmetric and there are distinct �, �, �
with b r�

s�
c D b

r�
s�
c D b

r�
s�
c and s�; s� ; s� > 1. After relabelling, we can assume that

r�
s�
�

r�
s�
�

r�
s�

. As argued before,

!0;4
�
� � � �
z1 z3 z2 z4

�
D 0

because �¤ �. So it suffices to show that !0;4
�
� � � �
z1 z2 z3 z4

�
¤ 0 in order to get a con-

tradiction.
In the case r�

s�
> r�

s�
�

r�
s�

, the correlator !0;4
�
� � � �
z1 z2 z3 z4

�
gets a contribution

from (1) and twice from (3b) giving us

!0;4
�
� � � �
z1 z2 z3 z4

�
dz1dz2dz3dz4

D �
1

t2�
Res
zD0

dz
X

k1;k2;k3;k4;`3;`4�1
r� js�.`3�1/Ck3
r�js�.`4�1/Ck4

k2k3k4 z
�k1�1
1 z

�k2�1
2 zk1Ck2�1

�

� t�
t�

�`3�1
z
�k3�1
3 z.s�.`3�1/Ck3/

r�
r�
�`3s�
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�

� t�
t�

�`4�1
z
�k4�1
4 z

.s�.`4�1/Ck4/
r�
r�
�`4s�

D �
1

t2�

X
k1;k2;k3;k4�1

`0
3
;`0
4
�0

k2k3k4

� t�
t�

�`�.k3/C`03r�� t�
t�

�`�.k4/C`04r�� 4Y
mD1

z�km�1m

�

� ık1Ck2�a�;�.k3/C`03.r�s��r�s�/�a�;�.k4/C`
0
4
.r�s��r�s�/; 0

;

where we defined a�;�.k3/ and a�;�.k4/ as in (6.6). Again, the key observation to
make is that a�;�.1/ > 0. We have already shown this in (6.7) for two cases. In the
other two remaining cases, a straightforward calculation shows that a�;�.1/ D 1 in
case r� D �1 mod s� and r� D 1 mod s� , and a�;�.1/ D .s� � 1/.s� � 1/ if r� D
1 mod s� and r� D �1 mod s� confirming that indeed a�;�.1/ is a strictly positive
integer. Thus, the residue

Res
z1D0
� � � Res

z4D0
z
a�;�.1/

1 z
a�;�.1/

2 z3z4 !0;4
�
� � � �
z1 z2 z3 z4

�
D �

a�;�.1/

t2�

X
`0
3
;`0
4
�0

� t�
t�

�`�.1/C`03r�� t�
t�

�`�.1/C`04r�
ı`0
3
.r�s��r�s�/C`

0
4
.r�s��r�s�/; 0

D �
a�;�.1/

t2�

� t�
t�

�`�.1/� t�
t�

�`�.1/
is non-vanishing and hence !0;4

�
� � � �
z1 z2 z3 z4

�
¤ 0 giving us the desired contradiction.

Now if r�
s�
D

r�
s�
> r�

s�
, we can proceed similarly. This time the correlator receives

contributions from (1), (3a), and (3b) leading to

!0;4
�
� � � �
z1 z2 z3 z4

�
dz1dz2dz3dz4

D �
1

t�

X
k1;k2;k3;k4�1

`0
4
�0

k2k3k4
t
r��`�.k3/�1
� t

`�.k3/
�

t
r�
� � t

r�
�

� t�
t�

�`�.k4/C`04r�

�

� 4Y
mD1

z�km�1m

�
ık1Ck2Ck3�s��a�;�.k4/C`04.r�s��r�s�/; 0

:

Therefore, also in this case we find that !0;4
�
� � � �
z1 z2 z3 z4

�
¤ 0 as

Res
z1D0
� � � Res

z4D0
z
s��1

1 z
a�;�.1/

2 z3z4 !0;4
�
� � � �
z1 z2 z3 z4

�
D
a�;�.1/

t�

t
r��`�.1/�1
� t

`�.1/
�

t
r�
� � t

r�
�

� t�
t�

�`�.1/
¤ 0:

Similarly, if r�
s�
D

r�
s�
D

r�
s�

, an analogous calculation gives

Res
z1D0
� � � Res

z4D0
z
s��1

1 z
s��1

2 z3z4 !0;4
�
� � � �
z1 z2 z3 z4

�
¤ 0:
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6.1.2. The Bouchard–Eynard formula for .0; 3/ does not hold in general. Let us
compare !0;3 with

{!0;3
�
�1 �2 �3
z1 z2 z3

�
D

X
�

Res
zD�

!0;2.z; z1/!0;2.z; z2/!0;2.z; z3/

dx.z/dy.z/

D �

X
�

ı�1;�2;�3;�
X

k1;k2;k3>0

k1k2k3 dz1dz2dz3
z
k1C1
1 z

k2C1
2 z

k3C1
3

ık1Ck2Ck3;s�

t�r�.s� � r�/
:

According to [14, Proposition 11], {!0;3 D !0;3 for regularly admissible spectral cur-
ves. More generally, if the spectral curve is admissible, comparing with Proposi-
tion 6.1, we see that !0;3 D {!0;3 if and only if c� D 1

s��r�
or s� � 2 for each � 2 za.

The condition c� D 1
s��r�

implies that s� D r� C 1, which by property (ii) of Pro-
position 6.1 can only hold for one �. Comparing with Theorem 2.11, we see that,
e.g., .r1; s1; r2; s2/ D .5; 3; 3; 2/ gives an Airy structure for which !0;3 ¤ {!0;3. We
conclude that [14, Proposition 11] does not always hold in our general setup.

6.1.3. .g; n/ D .1
2
; 2/. In Section 5.4, we already asked the question whether topo-

logical recursion applied to any curve admissible in genus 0, which in this section
we will continue to assume to be of the form (6.1), together with a choice of !0;2
and ! 1

2 ;1
will yield symmetric !g;n not just for g D 0 but also for g > 0. By studying

the symmetry of ! 1
2 ;2

, we will see that this is not always possible unless the paramet-
ers Q� in ! 1

2 ;1
. �z / D

Q�dz
z

satisfy certain compatibility conditions. Let us first look
at two examples.

Example 6.5. Let us consider the two-component curve of type .r1; s1/ D .r2; s2/ D
.3; 2/ and choose t1 D �t2 D 1. Then the topological recursion gives us

! 1
2 ;2

�
1 1
z1 z2

�
D �

�Q1
3
C
Q2

2

�dz1dz2
z21z

2
2

;

! 1
2 ;2

�
2 2
z1 z2

�
D

�Q1
2
C
Q2

3

�dz1dz2
z21z

2
2

;

which are always symmetric under the exchange of arguments, while for arguments
lying on different components, we find that

! 1
2 ;2

�
1 2
z1 z2

�
D
Q1

2

dz1dz2
z21z

2
2

; ! 1
2 ;2

�
2 1
z1 z2

�
D �

Q2

2

dz1dz2
z21z

2
2

;

which means that ! 1
2 ;2

can only be symmetric if Q1 CQ2 D 0.

Example 6.6. Let us look at the two-component curve with .r1; s1/ D .8; 3/ and
.r2; s2/ D .5; 3/. Furthermore, we choose t1 D t2 D 1. In this case, ! 1

2 ;2
vanishes for
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arguments lying on different components and

! 1
2 ;2

�
1 1
z1 z2

�
D �

5Q1 C 8Q2

4

dz1dz2
z21z

3
2

�
Q1 C 4Q2

4

dz1dz2
z31z

2
2

;

! 1
2 ;2

�
2 2
z1 z2

�
D �

6Q2

5

dz1dz2
z21z

3
2

�
Q2

5

dz1dz2
z31z

2
2

:

For the above to be symmetric under the exchange of z1 and z2, we needQ1DQ2D 0
which means in this case there is no ambiguity in choosing the Q�.

These two examples are special instances of the following classification.

Proposition 6.7. Assume .r�; s�/�2za are integers satisfying condition (i) and (ii)
from Proposition 6.1. Then ! 1

2 ;2
is symmetric if and only if

(iv) If s� > 2 and r� D 1 mod s� for � 2 za, thenX
�¤�
r�
s�
> r�s�

Q� D 0 and 8` 2 Œs� � 3�;
X
�¤�

s�D1; b
r�
s�
cDr�

Q�t
r�`
� D 0:

(v) If s� > 2 and r� D �1 mod s� for � 2 za, then

Q� C
X
�¤�
r�
s�
> r�s�

Q� D 0 and 8` 2 Œs� � 3�;
X
�¤�

s�D1;d
r�
s�
eDr�

Q�t
�r�`
� D 0:

(vi) For all � ¤ � with b r�
s�
c D b

r�
s�
c, r� D �1 mod s�, r� D 1 mod s� and

s�; s� > 1, we have
Q� D �Q� :

If these conditions are satisfied, we have if r� D r 0�s� C 1,

! 1
2 ;2

�
� �
z1 z2

�
D

X
k1;k2>0

k1k2dz1dz2
z
k1C1
1 z

k2C1
2

�
�
Q�r

0
�

t�r�
ık1Ck2;s�

C

X
�¤�
r�
s�
D
r�
s�

t
r��1
�

t
r�
� � t

r�
�

Q�ık1Ck2;s�ıs�;2

�

X
�¤�

s�D1;
�
r�
s�

˘
Dr�

Q�

t�

� t�
t�

�r�.s��2/
ık1Ck2;2ıs�>2

C

X
�¤�Ws�D2;

r�
s�
< r�s� ;b

r�
s�
cDb

r�
s�
c

Q�

t�
.t�t�/

r�ık1Ck2;2ıs�>2

�
; (6.8)
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and if r� D r 0�s� C s� � 1 and s� > 2, we have

! 1
2 ;2

�
� �
z1 z2

�
D

X
k1;k2>0

k1k2 dz1dz2
z
k1C1
1 z

k2C1
2

�Q�.r 0� C 1/
t�r�

ık1Ck2;s�

C

X
�¤�

s�D1;
˙
r�
s�

�
Dr�

Q�

t�

� t�
t�

�r�.s��2/
ık1Ck2;2ıs�>2

�

X
�¤�Ws�D2;

r�
s�
> r�s� ; b

r�
s�
cDb

r�
s�
c

Q�

t�

� t�
t�

�r�
ık1Ck2;2 ıs�>2

�
: (6.9)

Moreover, for � ¤ � we have

! 1
2 ;2

�
� �
z1 z2

�
D

8̂̂̂<̂
ˆ̂:
�

dz1dz2
z2
1
z2
2

Q�
t�

�
t�
t�

�r 0� if .r�; s�/, .r� ; s�/ satisfy (vi) and r�
s�
> r�

s�
;

�
dz1dz2
z2
1
z2
2

Q�t
r0�
� t

r0�
�

t
r�
� �t

r�
�

if r� D r� and s� D s� D 2;

0 otherwise:

(6.10)

Before proving Proposition 6.7, we need the following technical fact.

Lemma 6.8. Let r1; r2; s1; s2 > 0 with r� and s� coprime and r1
s1
> r2

s2
. Further

assume the integers satisfy all constraints from Proposition 6.1. Then

� WD r1s2 � r2s1

takes the following values:

• � D 1 if s1 D 1, r1 D
�
r2
s2

˘
C 1, and r2 D �1 mod s2 or we have s2 D 1, r2 D�

r1
s1

˘
, and r1 D 1 mod s1.

• � D max¹s1; s2º � 2 if s1 D 2,
�
r1
s1

˘
D
�
r2
s2

˘
, and r2 D 1 mod s2 or we have

s2 D 2,
�
r1
s1

˘
D
�
r2
s2

˘
, and r1 D �1 mod s1.

• Otherwise � � max¹s1; s2º � 1.

Proof. Let us write r� WD r 0�s� C r
00
� with r 00� 2 Œ0; s�/. Then due to (i), we know that

r 00� 2 ¹1; s� � 1º. We can thus rewrite

� D s1s2.r
0
1 � r

0
2/C r

00
1 s2 � r

00
2 s1: (6.11)

By simply plugging in the indicated values for r�, s�, it is easy to see that they indeed
produce � 2 ¹1;max¹s1; s2º � 2º. For instance, setting s1 D 1, r1 D r 02 C 1, and
r 002 D s2 � 1, we directly obtain � D 1 as was claimed.
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It is therefore only left to prove that in all other cases � � max¹s1; s2º � 1. To do
so, let us first assume r 01 D r

0
2, in which case (6.11) reduces to

� D r 001 s2 � r
00
2 s1 D

8̂̂̂<̂
ˆ̂:
s1 � s2 if r 001 D s1 � 1; r 002 D s2 � 1;

s1s2 � s1 � s2 if r 001 D s1 � 1; r 002 D 1;

s1 C s2 � s1s2 if r 001 D 1; r 002 D s2 � 1;

s2 � s1 if r 001 D 1; r 002 D 1:

Let us go through the cases separately. First assume r 001 D s1 � 1 and r 002 D s2 � 1.
In this case, (ii) forbids s1; s2 > 2. Notice now that since we assume that r1

s1
> r2

s2
,

necessarily � > 0 and therefore the only allowed cases are s2 D 1 with s1 > 1 or
s2 D 2 with s1 > 2. While s2 D 1 and s1 > 1 gives � D s2 � 1 D max¹s1; s2º � 1,
considering the second case yielded � D s2 � 2 D max¹s1; s2º � 2.

For our further analysis of the case r 01 D r
0
2, we can assume that s1; s2 > 2. Then

if r 001 D s1 � 1 and r 002 D 1, one has

� D s1.s2 � 1/ � s2 � 3.s2 � 1/ � s2 D 2s2 � 3 � s2;

and similarly also�� s1. Now assume r 001 D 1 and r 002 D s2 � 1. Then due to s1; s2>2,
one has

� D s2 � s1.s2 � 1/ < s2 � 2.s2 � 1/ D 2 � s2 < 0;

which contradicts the assumption that r1
s1
> r2

s2
. Finally, notice that the case r 001 D 1

and r 002 D 1 for s1; s2 > 2 is forbidden by (ii).
Now assume that r 01 ¤ r

0
2. Due to r1

s1
> r2

s2
, we know that r 01 > r

0
2, which taking

into account (6.11) implies that

� � s1s2 C r
00
1 s2 � r

00
2 s1 D s1.s2 � r

00
2 /C r

00
1 s2 � s1 C r

00
1 s2;

which is always larger than max¹s1; s2º � 1 unless r 001 D 0. However, if r 001 D 0, then
necessarily s1 D 1. Then either r 01 D r

0
2 C 1 implying that

� D s2 � r
00
2 D

´
1 if r 002 D s2 � 1;

s2 � 1 if r 002 D 1

or we have r 01 > r
0
2 C 1 yielding

� � 2s2 � r
00
2 � s2 > max¹s1; s2º � 1:

Note that the cases above, in which � D 1, are exactly those considered in the begin-
ning of the proof.
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Proof of Proposition 6.7. Let us start by computing ! 1
2 ;2

�
� �
z1 z2

�
. Inspecting equa-

tion (6.2), it should be clear that one may proceed as in the computation of !0;n.
While the second term in the bracket in (6.2) gives a contribution

! 1
2 ;2

�
� �
z1 z2

�
D � � � C Res

zD0

r��1X
aD1

zdz1
z1.z1 � z/

#a�

r�t�.#
as�
� � 1/zs��1

dz2
.#a�z � z2/

2

Q�dz
z

D � � � C

X
k1;k2>0

dz1dz2
z
k1C1
1 z

k2C1
2

k2Q� ık1Ck2;s�
2`�.k2/ � r� C 1

2r�t�
; (6.12)

the first one gets a contribution of type (1) and additionally a factor

1

r�.t�#
bs�
� zr�s�=r��1 � t�zs��1/

Q�dz
z

;

where one sums over b 2 Œr� � if � ¤ � and over b 2 Œr� � 1� if � D �. This gives

! 1
2 ;2

�
� �
z1 z2

�
D Res

zD0

X
�2za

r��ı�;�X
bD1

zdz1
z1.z1 � z/

dzdz2
.z � z2/2

Q�

r�.t�#
bs�
� zr�

s�
r�
�1
� t�zs��1/

dz
z
C � � �

D

X
k1;k2>0

dz1dz2
z
k1C1
1 z

k2C1
2

°
k2Q�ık1Ck2;s�

`�.k2/ � r� C 1

r�t�

C k2
X
�¤�
r�
s�
D
r�
s�

t
r��1
�

t
r�
� � t

r�
�

Q�ık1Ck2;s�

� k2
X
�¤�
r�
s�
> r�s�

X
`0�0

t
r�`
0

�

t
r�`0C1
�

Q�ık1Ck2C`0.r�s��r�s�/;s�

C k2
X
�¤�
r�
s�
< r�s�

X
`0>0

t
r�`
0�1

�

t
r�`0
�

Q�ık1Ck2�`0.r�s��r�s�/;s�

±
; (6.13)

where in the second line we also included the contribution from (6.12). Let us further
on use the notation

! 1
2 ;2

�
�1 �2
z1 z2

�
D

X
k1;k2>0

dz1dz2
z
k1C1
1 z

k2C1
2

F 1
2 ;2

� �1 �2
k1 k2

�
:
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Inspecting (6.13), we notice that for s� � 2 the components F 1
2 ;2

� � �
k1 k2

�
are always

symmetric under the exchange of arguments. To be more precise, for s� D 1 the
components all vanish and for s� D 2 they get a contribution from the first and second
line of (6.13) solely. Hence, using that `�.1/D r 0� for s� D 2, we see that in this case
F 1
2 ;2

� � �
k1 k2

�
is indeed given by (6.8).

Now let us assume that s� > 2. Then due to property (ii) of Proposition 6.1, the
contribution r�

s�
D

r�
s�

in (6.13) has to vanish and one ends up with

F 1
2 ;2

� � �
k1 k2

�
D �ık1Ck2;s�k2

�Q�.r� � 1 � `�.k2//
r�t�

C

X
�¤�
r�
s�
> r�s�

Q�

t�

�

C
k2

t�

X
`0>0

�
�

X
�¤�
r�
s�
> r�s�

� t�
t�

�r�`0
Q�ık1Ck2C`0.r�s��r�s�/;s�

C

X
�¤�
r�
s�
< r�s�

� t�
t�

�r�`0
Q�ık1Ck2�`0.r�s��r�s�/;s�

�
: (6.14)

Since r�s� � r�s� ¤ 0 for r�
s�
¤

r�
s�

, we can analyse the symmetry constraints coming
from the first and second line of (6.14) individually.

First, assume r� D r 0�s� C 1. Then if k1 C k2 D s�, we can use that

r� � 1 � `�.k2/ D r� � 1 � r
0
�k2 D r

0
�k1

to find that

F 1
2 ;2

� � �
k1 k2

�
D �k1k2

Q�r
0
�

r�t�
� k2

X
�¤�
r�
s�
> r�s�

Q�

t�
: (6.15)

This expression is symmetric under the exchange of k1 and k2 if and only ifX
�¤�
r�
s�
> r�s�

Q� D 0: (6.16)

Let us proceed by analysing the symmetry constraints coming from coefficients with
k1 C k2 < s�, i.e., we consider the second line of (6.14). Clearly, the case s� D 3

is symmetric. Therefore, now assume that s� > 3. In this case, we can only expect
a non-vanishing F 1

2 ;2

� � �
k1 k2

�
if jr�s� � r�s�j 2 Œs� � 3� for some � ¤ �. Due to

Lemma 6.8, we know that for all � either jr�s� � r�s�j D 1 or jr�s� � r�s�j � s� � 2,
which limits the cases where F 1

2 ;2

� � �
k1 k2

�
¤ 0 for k1 C k2 < s� severely. To be more
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precise, Lemma 6.8 tells us that jr�s� � r�s�j D 1 if and only if s� D 1 and r� Db
r�
s�
c.

Therefore, for 2 < k1 C k2 < s�, we have

F 1
2 ;2

� � �
k1 k2

�
D �

k2

t�

X
`0>0

X
�¤�

s�D1; r�Db
r�
s�
c

� t�
t�

�r�`0
Q� ık1Ck2C`0;s�

D �
k2

t�

X
�¤�

s�D1; r�Db
r�
s�
c

� t�
t�

�r�.s��k1�k2/
Q� ; (6.17)

which is symmetric if and only if for all ` 2 Œs� � 3�, we haveX
�¤�

s�D1; r�Db
r�
s�
c

� t�
t�

�r�`
Q� D 0:

Together with (6.16) this explains symmetry condition (iv). Regarding the formula for
F 1
2 ;2

� � �
k1 k2

�
stated in (6.8) notice that for s� D 2, we have

F 1
2 ;2

� � �
k1 k2

�
D �

Q�r
0
�

r�t�
ık1Ck2;2 C

X
�¤�
r�
s�
D
r�
s�

t
r��1
�

t
r�
� � t

r�
�

Q�ık1Ck2;s�

while for s� > 2 one has

F 1
2 ;2

� � �
k1 k2

�
D �

Q�r
0
�

r�t�
ık1Ck2;s� �

X
�¤�

s�D1;b
r�
s�
cDr�

Q�

t�

� t�
t�

�r�.s��2/
ık1Ck2;2

C

X
�¤�W s�D2;

r�
s�
< r�s� ;b

r�
s�
cDb

r�
s�
c

Q�

t�

� t�
t�

�r�
ık1Ck2;2:

In order to obtain the first two terms in the above expression, one applies the symmetry
constraint (iv) on (6.15) and (6.17). The third term is due to contributions � ¤ �

in (6.14), for which jr�s� � r�s�j D s� � 2. Lemma 6.8 tells us that this is the case
for exactly those � ¤ � with s� D 2, r�

s�
< r�

s�
, and

� r�
s�

˘
D
�
r�
s�

˘
. This now explains

the origin of all terms occurring in (6.8), which closes the analysis of the case r� D
r 0�s� C 1.

Now assume that r�D r 0�s�C s� � 1 and s� > 2. First, let us inspect F 1
2 ;2

� � �
k1 k2

�
given by (6.14) for k1 C k2 D s�. In this case, we can use that

r� � 1 � `�.k2/ D r� � k1.r
0
� C 1/
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in order to find that

F 1
2 ;2

� � �
k1 k2

�
D k1k2

Q�.r
0
� C 1/

r�t�
� k2

�
Q�

t�
C

X
�¤�
r�
s�
> r�s�

Q�

t�

�

for k1 C k2 D s�. This is symmetric if and only if

Q� C
X
�¤�
r�
s�
> r�s�

Q� D 0: (6.18)

Now let us turn to the case k1 C k2 < s�. Again, we may only expect a contribution
from � ¤ � in the second line of (6.14) possibly leading to a non-symmetric term if
jr�s� � r�s�j D 1. Now Lemma 6.8 says that jr�s� � r�s�j D 1 if and only if s� D 1
and r� D

˙ r�
s�

�
. Thus, for 2 < k1 C k2 < s�, we find that

F 1
2 ;2

� � �
k1 k2

�
D
k2

t�

X
�¤�

s�D1; r�Dd
r�
s�
e

� t�
t�

�r�.s��k1�k2/
Q� ;

which is symmetric if and only ifX
�¤�

s�D1; r�Dd
r�
s�
e

� t�
t�

�r�`
Q� D 0

for all ` 2 Œs� � 3�. This condition together with (6.18) are of course nothing but (v).
Since the derivation of formula (6.9) is in line with the one of (6.8), we omit a further
discussion.

Now let us consider F 1
2 ;2

� � �
k1 k2

�
for � ¤ �. First, assume r�

s�
D

r�
s�

. Note that in
this case, property (ii) of Proposition 6.1 forces s�D s� � 2. Using the same approach
as in the derivation of (6.13), one finds that

F 1
2 ;2

� � �
k1 k2

�
D �k2

Q�t
`�.k1/
� t

`�.k2/
�

t
r�
� � t

r�
�

ık1Ck2;s� : (6.19)

For s� D s� D 1, this expression is always vanishing and hence symmetric. Con-
versely, for s� D s� D 2, we have

F 1
2 ;2

� � �
k1 k2

�
D F 1

2 ;2

� � �
k2 k1

�
if and only if Q� D �Q� ;

which is captured in condition (vi).



Higher Airy structures and topological recursion for singular spectral curves 95

Now let us consider the case r�
s�
¤

r�
s�

. Without loss of generality, we can assume
that r�

s�
> r�

s�
. In this case, we have

F 1
2 ;2

� � �
k1 k2

�
D � k2

Q�

t�

X
`0�0

� t�
t�

�r�`0C`�.k2/
ı
k1C.k2Cs�`�.k2//

r�
r�
�s�`�.k2/C`0.r�s��r�s�/;s�

: (6.20)

Let us first simplify this expression before turning to F 1
2 ;2

� � �
k2 k1

�
. Comparing for-

mula (6.20) with (6.5), we can deduce that property (ii) of Proposition 6.1 ensures
that F 1

2 ;2

� � �
k1 k2

�
D 0 unless k1 D 1. And moreover, also F 1

2 ;2

� � �
k1 k2

�
D 0 unless

1C .k2 C s�`�.k2//
r�

r�
� s�`�.k2/ D s�: (6.21)

This relation cannot be satisfied for k2 � s� . Indeed, if r� D 1 mod s� , then

.k2 C s�`�.k2//
r�

r�
� s�`�.k2/ D k2.r� � r

0
�s�/ �

jk2r 0�
r�

k
.r�s� � r�s�/

D
s�

s�
k2 C

�k2
s�
�

jk2r 0�
r�

k�
.r�s� � r�s�/

�
s�

s�
k2 � s�

for all k2 � s� where we used that

`�.k/ D

8<: kr 0� �
�kr 0�
r�

˘
r� if r� D r 0�s� C 1;

�k.r 0� C 1/C
˙k.r 0�C1/

r�

�
r� if r� D r 0�s� C s� � 1

and that bkr
0
�

r�
c �

k
s�

. The case r� D �1 mod s� can be covered using similar argu-
ments. On the other hand, for 1 � k2 < s� , plugging in the explicit expression for
`�.k2/, we find that (6.21) is equivalent to

s� � 1 D

´
k2.r� � s�r

0
�/ if r� D r 0�s� C 1;

s� C .s� � k2/.r� � s�r
0
�/ if r� D r 0�s� C s� � 1:

(6.22)

Let us first analyse the case r� D r 0�s� C 1. Since

r� � s�r
0
� D r

00
� C s�

�jr�
s�

k
�

jr�
s�

k
C ıs� ;1

�
; (6.23)

equation (6.22) can only be satisfied if s� > 1 and b r�
s�
c D b

r�
s�
c. Suppose the latter

is true, then since we assumed that r�
s�
> r�

s�
, we have s�r 00� > s�. Therefore, if we

had r 00� D 1 and s� > 2, this would violate property (ii) of Proposition 6.1, as in this
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case s� ; s� > 2. Hence, we can assume that r 00� D s� � 1. Using (6.23), this means
that (6.22) is satisfied if and only if k2 D 1.

The case where r� D r 0�s� C s� � 1 can be treated similarly. We can assume that
s� > 2 since s� � 2 is a special case of the one considered before. Now since r� �
s�r
0
� � 0, we always have

s� C .s� � k2/.r� � s�r
0
�/ � s�;

implying that (6.22) cannot be satisfied for any k2 > 0. Thus, F 1
2 ;2

� � �
k1 k2

�
D 0 for all

ki > 0 if s� > 2 and r� D r 0�s� C s� � 1. To sum up, assuming that (i) and (ii) from
Proposition 6.1 hold, we have

F 1
2 ;2

� � �
k1 k2

�
D

8̂<̂
:
�
Q�
t�

�
t�
t�

�`�.1/ if k1 D k2 D 1; s� > 1; b
r�
s�
c D b

r�
s�
c;

r� D �1 mod s�; r� D 1 mod s� ;

0 otherwise:

(6.24)

One can obtain a similar expression for F 1
2 ;2

� � �
k2 k1

�
. First, one finds that

F 1
2 ;2

� � �
k2 k1

�
D k1

X
`�0

t`�

t`C1�

Q�ır�jk1�.`C1/s�ık2C.k1�.`C1/s�/ r�r�C`s� ;0
:

Then comparing the above expression with (6.5), one can simplify the expression for
F 1
2 ;2

� � �
k2 k1

�
as we did with F 1

2 ;2

� � �
k1 k2

�
before. One finds that

F 1
2 ;2

� � �
k2 k1

�
D

8̂̂<̂
:̂
Q�
t�

�
t�
t�

�r��`�.1/ if k1 D k2 D 1; s� > 1; b
r�
s�
c D b

r�
s�
c;

r� D �1 mod s�; r� D 1 mod s� ;

0 otherwise:

(6.25)

Now comparing (6.24) with (6.25), it is clear that

F 1
2 ;2

� � �
k1 k2

�
D F 1

2 ;2

� � �
k2 k1

�
if and only if

Q�

t�

� t�
t�

�`�.1/
D �

Q�

t�

� t�
t�

�r��`�.1/
(6.26)

in the case r� D r 0�s� C s� � 1, r� D r 0�s� C 1, s� > 1, and r 0� D r 0� . Notice now
that due to `�.1/ D r 0� and `�.1/ D r� � r

0
� � 1, equation (6.26) is equivalent to

Q� D �Q� , which is nothing but condition (vi). Finally, notice that equations (6.19)
and (6.24) directly imply the formula for ! 1

2 ;2

�
� �
z1 z2

�
stated in (6.10). This finishes

the proof of Proposition 6.7.
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6.1.4. .g; n/ D .1; 1/. We study separately the two types of terms in (6.2):

!1;1
�
�1
z1

�
D !I

1;1

�
�1
z1

�
C !II

1;1

�
�1
z1

�
;

where !I
1;1 is the contribution from !0;2, and !II

1;1 is the one from ! 1
2 ;1
� ! 1

2 ;1
.

Lemma 6.9. Let � 2 za. Then

!I
1;1.

�
z / D

r2� � 1

24r�t�

dz
zs�C1

:

Proof. We have

!I
1;1

�
�
z1

�
D Res
zD�

r��1X
aD1

K�

�
� � �
z1 z #

a
�z

� #a�

.1 � #a�/
2

.dz/2

z2
; (6.27)

where the presence of !0;2.z; z0/ forces the three variables in the recursion kernel to
belong to the same component zC� of zC . To handle the sum, we use the following
identity for a not divisible by r�:

#a�

.1 � #a�/
2
D

r��1X
mD0

m.r� �m/

2r�
#am� : (6.28)

The contribution of each term of the right-hand side of (6.28) to (6.27) can be com-
puted similarly to (3a). After computation of the residue, we find

!I
1;1

�
�
z1

�
D �

r��1X
mD0

m.r� �m/.r� � 1 � 2`�.m//

4r2�t�

dz1
z
s�C1

1

; (6.29)

and it is enough to sum over m 2 Œr� � 1�. Recall that `�.m/ is defined as the unique
integer in Œ0; r�/ such that `�.m/ D �mc� mod r�, where c� is given by equa-
tion (6.4).

In the case r� D r 0�s� C 1, we can decompose m D m0s� Cm00 with m00 2 Œs��.
It putsm 2 Œr� � 1� into bijection with .m0;m00/ 2 Œ0; r 0�/� Œs��, and we get `�.m/D
r 0�m � r�m

0 D r 0�m
00 �m0. Then, we have

r��1X
mD1

m.r� � 1/.r� � 1 � 2`�.m// D

r��1X
m0D0

s�X
m00D1

.m0s� Cm
00/.r� �m

0s� �m
00/

� .r� � 1 � 2r
0
�m
00
C 2m0/ D �

r�.r
2
� � 1/

6
;

whence

!I
1;1

�
�
z1

�
D
r2� � 1

24r�t�

dz1
z
s�C1

1

:
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In the case r�D r 0�s�C s� � 1, we decomposemDm0s�Cm00 withm00 2 Œ0; s�/.
It puts m 2 Œr�� into bijection with .m0; m00/ 2 Œ0; r 0�� � Œ0; s�/ and gives

`�.m/ D �.r
0
� C 1/mC .m

0
C 1/r� D r� �m

0
� .r 0� C 1/m

00:

Then, we have

r�X
mD0

m.r� � 1/.r� � 1 � 2`�/ D

r 0�X
m0D0

s��1X
m00D1

.m0s� Cm
00/.r� �m

0s� �m
00/

� .2m0C 2.r 0� C 1/m
00
� r� � 1/ D �

r�.r
2
�� 1/

6
:

So, we obtain the same formula for !I
1;1 in both cases.

Remark 6.10. This computation can also be done directly from the Airy structure, as

!I
1;1.

�
z / D

X
k>0

F1;1Œk�jQD0
dz
zkC1

and F1;1Œk� is the constant term of order „ in the unique operator of the Airy structure
of the form „@xk CO.2/. In fact, as (6.27) coincides with the topological recursion on
the sole component zC� of the spectral curve, the value of F1;1Œk�jQD0 must coincide
at t� D 1

r�
with the one computed in [9, Lemma B.3]. This is indeed the case, but we

note the calculation by this other method involves the sum

‰.1/.;/ D �
1

2

r��1X
mD0

m.r� �m/

2r�
D �

r�.r
2
� � 1/

24
;

which is much simpler than (6.29), although it leads to the same result.

To obtain !II
1;1, we can split the contribution of the various � as we did in the

derivation of equation (6.13). The details are omitted and we only give the outcome:

!II
1;1

�
�
z1

�
D dz1Q�

²
�z
�.s�C1/

1 Q�
r� � 1

2r�t�
�

X
�¤�
r�
s�
D
r�
s�

t
r��1
�

t
r�
� � t

r�
�

Q�

z
s�C1

1

�

X
�¤�
r�
s�
> r�s�

X
k1>0
`0�0

t
r�`
0

�

t
r�`0C1
�

Q�

z
k1C1
1

ık1C`0.s�r��s�r�/;s�

C

X
�¤�
r�
s�
< r�s�

X
k1>0
`0>0

t
r�`
0�1

�

t
r�`0
�

Q�

z
k1C1
1

ık1C`0.s�r��s�r�/;s�

³
:
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6.2. The exceptional case

We proceed considering a spectral curve with only one branchpoint. Let us only
slightly change the setting and add a component – the exceptional component – in-
dexed by �� 2 za on which

x. ��z / D z; y. ��z / D 0;

i.e., r�� D 1 and s�� D1. On all other components � 2 za n ¹��º we still take

x. �z / D z
r� ; y. �z / D �t� z

s��r� ;

and we equip the curve with the standard bidifferential and the crosscap differential

! 1
2 ;1
. �z / D

Q�dz
z

:

As before, we only require that gcd.r�; s�/ D 1, and that for r�
s�
D

r�
s�

and � ¤ �

we must have t r�� ¤ t
r�
� . In the following, we will consider and partially compute the

correlators !0;3, !0;4 and ! 1
2 ;2

and characterise the cases in which they are symmet-
ric. These correlators are still given by formula (6.2), and we will learn that in the
exceptional case they mostly behave as in the standard case which was discussed in
the preceding sections.

Lemma 6.11. The correlators .!0;n/n�1 are symmetric if and only if conditions (i),
(ii) of Proposition 6.1 and condition (iii) of Proposition 6.2 are satisfied. Assuming the
above conditions, ! 1

2 ;2
is symmetric if and only if (iv), (v), and (vi) of Proposition 6.7

hold. In this case, the correlators !0;3 and ! 1
2 ;2

are still given by the formulas stated
in Propositions 6.1 and 6.7, where any Kronecker delta involving s�� D1 evaluates
to 0.

Remark 6.12. One should remark that all expressions occurring in (i) to (vi) make
sense even with s�� D 1 for a single �� 2 za if we understand r�� D 1 mod s��
and interpret r��

s��
as being zero.

Proof of Lemma 6.11. Let us first focus on the correlators .!0;n/n�1. Regarding those,
Theorem 5.26 already tells us that (i), (ii), and (iii) are sufficient conditions for these
correlators to be symmetric. Conversely, we can argue that these conditions are also
necessary for the symmetry by looking at !0;3 and !0;4.

First of all, we notice that in the case �1, �2, �3 satisfy �i ¤ ��, the correlator
!0;3

�
�1 �2 �3
z1 z2 z3

�
is computed as in the standard case considered in Proposition 6.1

since the bidifferential does not mix the components. So first, we can deduce that
restriction of !0;3 to the non-exceptional components is symmetric if and only if
.r�; s�/�¤�� satisfy (i) and (ii) and second, we know that in this case !0;3 is given
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by (6.3). The same argument applied to !0;4 tells us that .r�; s�/�¤�� have to sat-
isfy (iii) for the correlator to be symmetric.

Hence, we only need to argue that (i)–(iii) involving the component zC�� are
necessary to impose. However, condition (i) is satisfied by our convention that r�� D
1 mod s�� . Regarding property (ii), suppose there is a � ¤ �� for which s� > 2,
r� D 1 mod s�, and b r�

s�
c D 0. Then of course we must already have r�2 D 1. In this

case, the correlator

!0;3
�
� � ��
z1 z2 z3

�
dz1dz2dz3

D
1

dz1
Res
zD�

K�
�
� � ��
z1 z z

� X
k2;k3�1

k2k3z
k2Ck3�2z

�k2�1
2 z

�k3�1
3 .dz/2

D �
1

t�

X
k1;k2;k3�1

k2k3z
�k1�1
1 z

�k2�1
2 z

�k3�1
3 ık1Ck2Ck3;s� ; (6.30)

where we used that

K�
�
� � ��
z1 z z

�
D �

dz1
t�dz

X
k1�1

zk1C1�s�z
�k1�1
1 :

This is clearly non-zero, unlike !0;3
�
� �� �
z1 z3 z2

�
D 0, and therefore we see that (ii)

must indeed be satisfied for all .r�; s�/�2za for !0;3 to be symmetric.
Regarding (iii) we proceed similarly. Suppose there are � ¤ � distinct from ��

with s�; s� > 1 and b r�
s�
c D b

r�
s�
c D 0. Then (i) and (ii) only leave us with r� D r� D 1

and s� D s� D 2. We compute

!0;4
�
� � � ��
z1 z2 z3 z4

�
dz1dz2dz3dz4

D
1

dz1
Res
zD�

K�
�
� � � ��
z1 z z z

�
�

X
k2;k3;k4�1

k2k3k4z
k2Ck3Ck4�3z

�k2�1
2 z

�k3�1
3 z

�k4�1
4 .dz/3

D �
1

t�.t� � t�/

1

z21z
2
2z
2
3z
2
4

;

which is non-vanishing, where

K�
�
� � � ��
z1 z z z

�
D �

dz1
.t� � t�/t�.dz/2

X
k1�1

zk1�2z
�k1�1
1 :

Using that always !0;4
�
� � � ��
z1 z3 z2 z4

�
D 0, this shows that (ii) is indeed necessary to

impose.
Now let us turn to ! 1

2 ;2
. In the following, set !01

2 ;2
WD ! 1

2 ;2
jQ��D0 , i.e., by !01

2 ;2we denote the restriction of ! 1
2 ;2

to the non-exceptional components. Then for distinct
�; � 2 za n ¹��º, we have

! 1
2 ;2

�
� �
z1 z2

�
D !01

2 ;2

�
� �
z1 z2

�
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as the bidifferential is not mixing the components. Thus, from the analysis done in
Proposition 6.7, we deduce that the condition ensuring the symmetry of this correlator
is (vi) and in the symmetric case it can be evaluated using formula (6.10). However,
if the arguments lie on the same component � ¤ ��, we obtain an additional contri-
bution

! 1
2 ;2

�
� �
z1 z2

�
D !01

2 ;2

�
� �
z1 z2

�
C r�Q�� Res

zD�
K�

� � � ��
z1 z z

r�

� X
k2�1

k2z
k2�2z

�k2�1
2 .dz/2dz2

D !01
2 ;2

�
� �
z1 z2

�
�

X
k1;k2�1

dz1dz2
z
k1C1
1 z

k2C1
2

k2
Q��
t�

ık1Ck2;s�

coming from the first term in the bracket in (6.2). This is symmetric for s� � 2, while
for s� > 3 we can use that !01

2 ;2

�
� �
z1 z2

�
is computed via (6.14) in order to get

! 1
2 ;2

�
� �
z1 z2

�
D

X
k1;k2�1

dz1dz2
z
k1C1
1 z

k2C1
2

²
� ık1Ck2;s�k2

�
Q�.r� � 1 � `�.k2//

r�t�
C

X
�2zan¹�º
r�
s�
> r�s�

Q�

t�

�

C
k2

t�

X
`0>0

�
�

X
�2zan¹�;��º
r�
s�
> r�s�

� t�
t�

�r�`0
Q�ık1Ck2C`0.r�s��r�s�/;s�

C

X
�2zan¹�;��º
r�
s�
< r�s�

� t�
t�

�r�`0
Q�ık1Ck2�`0.r�s��r�s�/;s�

�³
:

Comparing formula (6.14) with the above equation and following the characterisation
of the symmetry of (6.14), it should be clear that the condition for the symmetry of
! 1
2 ;2

�
� �
z1 z2

�
above is encoded in (iv) and (v).

Now let us turn to the computation of correlators with arguments lying on the
exceptional component. It is a straightforward calculation to find that

! 1
2 ;2

�
�� ��
z1 z2

�
D

dz1dz2
z21z

2
2

X
�¤��

.r� ;s�/D.1;2/

Q�

t�
; (6.31)

which is always symmetric. Notice at this point that this is in accordance with (iv)
and (v) as the two conditions do not imply any constraints for ��. Now let us briefly
argue that formula (6.8) exactly produces the result for ! 1

2 ;2

�
�� ��
z1 z2

�
we obtained

above. Since r 0�� D b
r��
s��
c D 0, the first term in (6.8) vanishes. The two terms after
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are empty sums, hence vanishing. Thus the last term in (6.8) is the only one potentially
leading to a non-zero contribution, and indeed one finds that the sum condition in this
sum coincides with the one in (6.31). We therefore deduce that formula (6.8) even
applies for the exceptional case.

It is also straightforward to compute

! 1
2 ;2

�
� ��
z1 z2

�
D �ır�C1;s�

Q�

t�

dz1dz2
z21z

2
2

;

! 1
2 ;2

�
� ��
z1 z2

�
D ır�C1;s�

Q��
t�

dz1dz2
z21z

2
2

(6.32)

for � ¤ ��. We therefore deduce the symmetry condition that for all � ¤ �� with
s� D r� C 1 necessarily Q� D �Q�� . This condition is however covered in (vi).
Notice moreover that (6.10) applied to the case at hand indeed produces (6.32).

At last, let us show that the statement of Proposition 6.2 is true in the excep-
tional case as well. For this notice that if we choose �; �; � 2 za pairwise distinct with
r�
s�
D

r�
s�
D

r�
s�

, then already s� <1. Thus, !0;4
�
� � � �
z1 z2 z3 z4

�
gets the same contribu-

tions as in the standard case which means that the further discussion of the symmetry
of this correlator must be in line with the proof of Proposition 6.2.

6.3. Necessary conditions for symmetry

In Corollary 6.3, we showed that the topological recursion formula outputs symmetric
.!0;n/n�1 if and only if the considered spectral curve is admissible in genus 0. Using
Proposition 5.24, this means that the associated differential operators H˛Ii;k , which
we introduced in Definition 5.17, admit a partition function solving the associated
system of differential equations to leading order in „

1
2 in the sense of equation (2.25).

This, on the other hand, implies that for the differential operators of the type con-
sidered in Section 2.3.2 – which are exactly those corresponding to spectral curves
of the form (6.1) – the reverse direction of Theorem 2.13 is true as well. This is
exactly the statement of Proposition 2.16 which we have hereby proven. Note that by
Lemma 6.11 the statement of Corollary 6.3 holds in the exceptional case too.

The next natural step is to investigate the necessary conditions for the operators
H˛Ii;k to be an Airy structure. Suppose they are, then we know from Theorem 5.23
that all !g;n have to be symmetric. So especially the symmetry conditions for ! 1

2 ;2

will impose further necessary conditions on theH˛Ii;k to be an Airy structure. We will
analyse how they restrict the choice of .r�; s�/�2�2za in case we ask ! 1

2 ;2
to be sym-

metric for all Q� 2 C, � 2 za only being subject to the constraintX
�2za

Q� D 0: (6.33)
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Before we begin our analysis, let us remark that during our calculation in Sections 6.1
and 6.2 we were always assuming that gcd.r�; s�/ D 1,

t
r�
� ¤ t

r�
� whenever .r�; s�/ D .r� ; s�/ and � ¤ �; (6.34)

and that s� D1 for at most one � 2 za. However, we already argued in Remarks 3.4
and 3.16 that these assumptions are indeed necessary so that the differential operators
are an Airy structure. In order to be closer to the notation of Section 2.3.2, let us
choose a lexicographic ordering �W Œd �! za satisfying �j � �jC1.

Proof of Proposition 2.17. Due to (i) of Proposition 6.1, we know that necessarily
r� D˙1 mod s� for all � 2 za. If s�1 >2, then (ii) tells us that we must have r�1

s�1
>
r�2
s�2

.
Therefore, X

�¤�1
r�1
s�1

> r�s�

Q� D

dX
jD2

Q�j

and hence – since we assume ! 1
2 ;2

to be symmetric for all choices of Q� satisfy-
ing (6.33) – condition (iv) of Proposition 6.7 forbids that r�1 D 1 mod s�1 and s�1 >2
as we can always choose the Qs such thatX

j2.d�

Q�j ¤ 0:

Thus, we are left with r�1 D �1 mod s�1 .
Now let us see which values the symmetry conditions allow .r�j ; s�j / to take in

the case j … ¹1; dº. First, let us assume r�1
s�1
D

r�j
s�j

. Then by (ii), necessarily s�j 2
¹1; 2º. If however r�1

s�1
>

r�j
s�j

, then conditions (iv) and (v) also force s�j 2 ¹1; 2º,
using that we can choose the Qs arbitrary except that they must satisfy (6.33).

As one can use similar arguments in order to show that also r�d D 1 mod s�d , we
omit the further discussion of this case.

Now let us analyse the implications coming from condition (vi) in the case of
generic Qs. If d D 2, condition (vi) is always satisfied since the requirement that
Q� D �Q� for � ¤ � is nothing but property (6.33). Therefore, let us assume that
d > 2. In this case, (vi) exactly forbids that r�D r� and s�D s� D 2 for�¤ �. Hence,
taking into account the other constraints we have already derived for .r�; s�/�2za we
deduce that for d > 2 necessarily s� D s� D 1 whenever .r�; s�/D .r� ; s�/ for some
� ¤ �.

Note that due to Lemma 6.11, the above discussion covers both the standard and
the exceptional case.
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Part III
Applications to intersection theory

We expect that the coefficients Fg;n of the partition function for all basic Airy struc-
tures (those of Sections 2.3.1 and 2.3.2) and the !g;n of the corresponding topolo-
gical recursion can be represented as integrals of distinguished cohomology classes
on xMg;n or its relatives. As soon as such a representation is known for one spec-
tral curve admitting a single ramification point and whose type belongs to a certain
set, it is relatively easy to extend it to any spectral curve having ramification points
whose type belong to this set. The reason is that the corresponding Airy structure is
built from the basic Airy structures by direct sums, change of polarisations and fur-
ther dilaton shifts, cf. Section 2.3.3. In terms of partition functions, this is sometimes
called “Givental decomposition”.

We develop this idea for two types for which the link to xMg;n is already known:

• the type .r; s/ D .r; r C 1/ is related to Witten r-spin theory. The r D 2 subcase
is Eynard’s formula [32,33], and by generalising it to any r , we answer a question
of Shadrin to the first-named author;

• the type .r1; s1; r2; s2/ D .r; r C 1; 1;1/ is related to open r-spin intersection
theory as discussed in Section 8.

The type .r; s/ for other s is discussed in Section 7.5.4 assuming the existence of a spe-
cial class on xMg;n which has only been constructed for .r; s/ D .2; 1/ so far [24, 49].
It turns out that Laplace-type integrals play an important role in such representations,
and we first study them in the preliminary Section 7.1. The method is general: if in
the future an enumerative interpretation is found for a larger set of types, it is rather
automatic to follow the strategy at work in these two examples and extend our rep-
resentations to any spectral curve having ramifications whose types belong to this
larger set.

7. Representation of correlators via intersection theory

7.1. The Laplace isomorphisms

Let r � 1. If m � 1 � r is an integer, we introduce the r-fold factorial either by
induction

mŠ.r/ D

´
1 if 1 � r � m � 0;

m � .m � r/Š.r/ if m > 0
(7.1)
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or equivalently in terms of the Gamma function

mŠ.r/ D
r
m
r C1�.m

r
C 1/

r h
m
r i�.hm

r
i/

;

where we have defined hdrCa
r
i D

a
r

if d 2 Z and a 2 Œr�.

Definition 7.1. We introduce two isomorphisms:

LCW CJ�Kd� ! u
1
r CJu 1r K;

k�k�1d� 7! kŠ.r/ u
k
r ;

L�W CŒ��1� ��2d� ! �
1
r CŒ�

1
r �;

kŠ.r/��.kC1/d� 7! �
k
r :

Abusing notation slightly, we also write L˙ for the maps extended to the domain
C..�//d� by defining them to be zero on any monomial not in the original domain of
definition.

The first map can be realised by integrating over paths from 0 to1 in the x-plane.

Lemma 7.2. We have

LC D

r�1X
jD0

Æj
Z
e
2i�j
r RC

e�
�r

ur ;

where the constants are

Æj WD
rX
aD1

e�
2i�ja
r

r
a
r �.a

r
/
: (7.2)

Proof. Let ǰ be from 0 to 1 in the angular direction e
2i�j
r . Consider integration

along a formal combination of paths ˇ D
Pr�1
jD0 Æj ǰ for some Æj 2 C. For k D

dr C a with d � 0 and a 2 Œr�, we computeZ
ˇ

e�
�r

ur k�k�1d� D
r�1X
jD0

Æj e
2i�ja
r .ur/

k
r
k

r

Z
RC

e�zx zx
k
r �1dzx

D ryÆau
k
r r

k
r �
�k
r
C 1

�
D yÆau

k
r r

a
r �
�a
r

�
kŠ.r/

with the change of variable zx D �r=ur and the discrete Fourier transform for a 2 Z

yÆa D
1

r

r�1X
jD0

e
2i�ja
r Æj :
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0R�
1

2

3

4

5

6

Figure 1. Left panel: contours in the �-plane for r D 6. The striped regions correspond to
Re x > M . Right panel: Hankel contour in the x plane.

We get Z
�

e��
r=ur k�k�1d� D LCŒ�

k�1d��

provided we choose
yÆa D

1

r
a
r �
�
a
r

� :
This entails the result by inverse discrete Fourier transform.

The second map can be realised by contour integration. To this end, let  be the
Hankel contour giving the Gamma function representation (Figure 1)

1

�.˛/
D

Z


exx�˛dx; ˛ 2 C;

that is,  goes from �1 � i0 to �i0, then round the origin to Ci0 and ends in
�1 C i0. Under the branched covering � 7! x.�/ D �r , this contour has r differ-
ent lifts .j /rjD1, which we label so that j comes from the asymptotic direction
e�

i�
r .2jC1/.C1C i0/, approaches the origin and then ends in the asymptotic dir-

ection e�
i�
r .2j�1/.C1� i0/. These contours belong to the lattice of rank .r � 1/ of

Lefschetz thimbles
V WD H1.C;S

�
M IZ/;

where S�M D ¹z 2 C j Re x < �M º for some large M > 0. The homology classPr
jD1 j is trivial, and omitting one j we get a basis of V .

Lemma 7.3. We have

L� D

rX
jD1

Æj
2i�r

Z
j

e
��r

r

with the constants already appearing in (7.2).



Higher Airy structures and topological recursion for singular spectral curves 107

Proof. Let � > 0, j 2 Œr�. Consider the integral

	j .˛/ WD
1

2i�

Z
j

e
��r

r �˛d� (7.3)

for complex ˛ 2 C. Here, � 7! �˛ is defined in the usual way as the analytic function
on C nR� such that for � 2 R��, we have lim�!0C.� ˙ i�/˛ D e˙i�˛j�j˛ .

Let us first consider Re ˛ > 0. In this case, as the integrand is regular, we can
squeeze the Hankel contour to the half-axes of angles e�

i�.2kC1/
r for k 2 Œr�. After

a change of variable zx D � ��
r

r
, we find

	j .˛/ D
��
r

��˛C1r �
�e�

i�.2jC1/.˛C1/
r C e�

i�.2j�1/.˛C1/
r

�
�
1

r

Z
RC

e�zx zx
˛C1
r �1dzx

D

��
r

��˛C1r
e�

2i�j.˛C1/
r �

2i
r

sin
��.˛ C 1/

r

�
�
�˛ C 1

r

�
: (7.4)

We note that by definition in (7.3), 	j .˛/ is an entire function of ˛ 2 C. This is
also true for the right-hand side of (7.4): the Gamma function has simple poles when
˛C1
r
2 2Z�0, which are compensated by a zero in the prefactor. Then, by analytic

continuation, identity (7.4) remains true for all ˛ 2 C.
We apply it to ˛ D �.k C 1/, where k is a positive integer that we decompose as

k D rd C a with a 2 Œr� and d � 0. Then

	j .�.k C 1// D
��
r

�k
r

e
2i�jk
r
2i
r

sin
�
�
�jk

r

�
�
�
�
k

r

�
D �

k
r
2i�
r
e
2i�ja
r

1

r
k
r �.k

r
C 1/

D �
k
r e

2i�ja
r

2i�

r
a
r �.a

r
/kŠ.r/

:

Coming back to the definition (7.2) of Æj , we get

rX
jD1

Æj
2i�r

Z
j

e
�x
r
kŠ.r/d�
�kC1

D L�
hkŠ.r/ d�
�kC1

i
:

7.2. Laplace transform on curves

7.2.1. Total Laplace transform. Let C be a curve with normalisation � W zC ! C ,
equipped with a meromorphic 1-form dx. We shall rely on the notations introduced
in Section 5.4. We do not require that zC comes from a spectral curve in the sense
of Definition 5.1, neither that dzx is the differential of a meromorphic function on zC .
In particular, dzx could have simple poles, in which case a local primitive zx has logar-
ithmic singularities and would be multivalued on zC .
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Recall that we write dzx D ��dx, that a is the set of zeroes of dx (including sin-
gular points) and za D ��1.a/. Denote the order of a zero of dx at � 2 za by r� � 1
(this could be zero if �.a/ is singular). Around each � 2 za, we have a local coordinate
such that Z �

�

dzx D �r� :

We define the vector spaces

V D
M
�2za

V�; V� WD

r�M
lD1

C:e�;l

and equip V with the pairing

�.e�;l ˝ e�;m/ D
ı�;�ılCm;r�

r�
: (7.5)

Remark 7.4. The fact that e�;r� are null vectors for � is a convention: it simplifies
the formulas in Section 7.2.3 but has no effect elsewhere. The factor r� is a choice
that will simplify formulas in Sections 7.2.3 and 7.5.4 but has no effect elsewhere.

When needed, we shall decompose integers k 2 Z as

k D xkr� C yk; yk 2 Œr��

and the index � 2 za that one should use will be clear from the context. In order to get
rid of fractional powers of the Laplace variable, we introduce the isomorphism

E��W �
1
r� CŒ�

1
r� �! V �� Œ��; �

k
r 7! e�

�;yk
�
xk;

where e�
�;l

is the dual basis with respect to the pairing �. Importing Definition 7.1, for
each � 2 za, we consider the local Laplace map

L�� D E� ı L� ı Loc�W H 0. zC ;K zC .�za//! V �� Œ��

and the total map

L�tot D

�M
�2za

L��

�
W H 0. zC ;K zC .�za//! V �Œ��:

We define in a similar way

E�W u
1
r� CŒŒ�

1
r� ��! V�ŒŒu��;

LC� W H
0. zC ;K zC .�za//! V�ŒŒu��;

LCtotW H
0. zC ;K zC .�za//! V ŒŒu��;

where the role of e�
�;k

is now played by e�;k .
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Remark 7.5. From Lemmas 7.2 and 7.3, we see that the natural variables Laplace
dual to x D �r are not u and ��1, but ru and r��1. Moreover, by a different choice of
constants (replacing multiple factorials by values of the � function at rational num-
bers), the transforms could have been given by a single integral. We give the Laplace
transform in this way to conform to conventions in the literature using r-fold factorials
for the case of a smooth spectral curve and its relation to the Witten r-spin class.

7.2.2. Two generating series. Assume that we are given a holomorphic 1-form !0;1

in a neighbourhood of za in zC .

Definition 7.6. We introduce T.u/ 2 V ŒŒu�� given by the formula

T.u/ WD
X
�2za

T�;ke�;yku
xk
WD

� X
�2za
s�¤1

e�;ys�u
xs�
�
C LCtotŒ!0;1�.u/

D

X
�2za
s�¤1

�
e�;ys�u

xs� C

X
k>0

.k � r�/Š
.r�/F0;1

� �
�k

�
e
�;yk
u
xk
�
:

Assume that we are given a fundamental bidifferential of the second kind !0;2 on
the smooth curve zC .

Definition 7.7. We introduce B.u; v/ 2 V ˝2ŒŒu; v�� given by the formula

B.u; v/ WD .LCtot/
˝2.!0;2 � !

std
0;2/

D

X
�;�2a
k;l>0

.k � r�/Š
.r�/ .l � r�/Š

.r�/ F0;2
� � �
�k �l

�
e
�;yk
˝ e

�;yl
u
xkv
xl ; (7.6)

where the second line follows from the decomposition in (5.14).

These definitions in particular apply to admissible spectral curves equipped with
a fundamental bidifferential of the second kind, but make sense in this greater gener-
ality. Their relevance will become clear in Section 7.5.

7.2.3. Factorisation property for B. We prove in this section a factorisation prop-
erty for B when zC is smooth compact connected curve and dzx is a meromorphic
1-form. Here we only need the data of a smooth compact curve zC , of a meromorphic
1-form that we denote dzx, and of a fundamental bidifferential of the second kind
on zC , which defines B.u; v/ in Definition 7.7. We do not need the full data of a spec-
tral curve, nor zC to be the normalisation of a curve. In light of Remark 7.5, and for this
section only, the “right” Laplace variables ru and rv (where r depends on the branch
point) will play a role, so that the result will be best formulated for the following
object.
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Definition 7.8. Let B�;�.u; v/ be the projection of B.u; v/ into .V� ˝ V�/ŒŒu; v�� and
define

xB.u; v/ WD
X
�;�2za

B�;�.u=r�; v=r�/:

Proposition 7.9. Assume that zC is a smooth compact connected curve, dzx is a mero-
morphic 1-form, and !0;2 is a fundamental bidifferential of the second kind on zC .
Then

xB.u; v/ D
1

uC v
.uxB.u; 0/C vxB.0; v/ � u v xB.u; 0/ ? xB.0; v//; (7.7)

where A ? B D .id˝ �˝ id/.A˝ B/. Besides, we have the compatibility relation

xB.u; 0/ � xB.0;�u/C uxB.u; 0/ ? xB.0;�u/ D 0: (7.8)

Remark 7.10. Such a property appeared in the case where C is smooth and dx has
simple zeroes in [33, Appendix B].

Proof. We have introduced in (5.15) the family of meromorphic 1-forms

d��
�k
.z/ D Res

z0D�

�Z z0

�

!0;2.z; �/

�
d�.z0/
�.z0/kC1

2 H 0. zC ;K zC ..k C 1/�// (7.9)

indexed by � 2 za and k > 0. We have for � 2 za,

Loc�.d�
�

�k
/ D

ı�;�d�
�kC1

C

X
l>0

F0;2
� � �
�k �l

�
k

�l�1d�: (7.10)

The idea of the proof is to derive a recursion for these forms using the action of
d. �dzx /, see equation (7.12) below. We will first prove it for the polar part near the
ramification points, and use that zC is smooth and compact and dzx meromorphic on zC
to get an equality of globally defined meromorphic forms. This implies a recursion
for the regular part of expansion (7.10), i.e., the coefficients F0;2, and this will imply
the desired relation for B.u1; u2/.

Since dzx D r��r��1d� near the ramification point �, we have

Loc�
h
�d
�d��
�k

dzx

�i
D
k C r�

r�

ı�;�d�
�kCr�C1

C

r��1X
lD1

F0;2
� � �
�k �l

�
k

r� � l

r�

d�
�r��lC1

CO.d�/:

As dzx is meromorphic, the 1-form

d
�d��
�k

dzx

�
C
k C r�

r�
d��
�.kCr�/

C

X
�2za

r��1X
lD1

F0;2
� � �
�k �l

�
k

r� � l

r�
d��l�r� (7.11)
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is holomorphic on zC . Since zC is compact and smooth, H1. zC ;C/ is a finite-dimen-
sional symplectic space equipped with the intersection pairing, and

K WD
²
 2 H1. zC ;C/

ˇ̌̌̌ Z


!0;2.�; z/ D 0

³
is a Lagrangian subspace. From definition (7.9), we see that integrating any d��

�k

for k > 0 and � 2 za along a cycle in K gives zero. The same is true for the first
term in (7.11) since it is an exact form. As the period map induces a non-degenerate
pairingH 0. zC ;K zC /˝ K! C and (7.11) is sent to 0, we deduce the identity between
meromorphic forms

d
�d��
�k

dzx

�
C
k C r�

r�
d��
�.kCr�/

C

X
�2za

r��1X
lD1

F0;2
� � �
�k �l

�
k

r� � l

r�
d��l�r� D 0: (7.12)

We now would like to apply the local Laplace transform LC� Œ��.v/ to this relation.
Recall that LC by definition kills the polar part. So, by direct computation on the basis
elements with Definition 7.1, we have

8' 2 H 0. zC ;K zC .�za//; LC�

h
d
� '

dzx

�i
.v/ D

1

r�
Œv�1LC� Œ'�.v/�C;

where Œ� � � �C keeps only the nonnegative powers of v. Expansion (7.10) implies for
any meromorphic form

LC� Œd�
�

�k
�.v/ D

X
l>0

F0;2
� � �
�k �l

�
k

.l � r�/Š
.r�/ e

�;yl
v
xl :

By comparison with (7.6), B�;�.u; v/ can be obtained by the generating series

B�;�.u; v/ D
X
k>0

kŠ.r�/e
�;yk
u
xk
˝ LC� Œd�

�

�k
�.v/:

Applying LC� Œ��.v/ to (7.12), multiplying by kŠ.r�/e
�;yk
u
xk , and summing over k > 0

then yields

.r�v/
�1.B�;�.u; v/ � B�;�.u; 0//C .r�u/�1.B�;�.u; v/ � B�;�.0; v//

C

X
�2za

1

r�

r��1X
lD1

.id˝ e��;l/ŒB�;�.u; 0/�.e
�
�;r��l

˝ id/ŒB�;�.0; v/� D 0:

Noticing that �.e�;l ˝ e�;r��m/ D r
�1
� ıl;m for l; m 2 Œr� � 1� and �.e�;r� ;�/ D 0,

this can be rewritten as

.r�uC r�v/B�;�.u; v/ � r�uB�;�.u; 0/ � r�vB�;�.0; v/

C r�r�uv
X
�2za

.id˝ �˝ id/ŒB�;�.u; 0/˝ B�;�.0; v/� D 0:
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Replacing u and v by u=r� and v=r�, respectively, and summing over �; � 2 za, this
implies the desired formula (7.7). Since the left-hand side is a formal power series
in u, v, it can be specialised at v D �u. This is possible on the right-hand side if and
only if (7.8) is satisfied.

For each � 2 za, we have an orthogonal direct sum V� Š
sV� ˚

0V� with

sV� D

r��1M
lD1

C:e�;l ;
0V� D C:e�;r� ;

and we decompose V Š 0V ˚ sV with

sV WD
M
�2za

sV�;
0V WD

M
�2za

0V�:

Definition 7.11. We introduce two generating series

R.u/ WD �? � u xB.u; 0/ 2 .V s/˝2JuK;
R?.u/ WD �? � u xB.0; u/ 2 .V s/˝2JuK;

where �? 2 .sV /˝2 � V ˝2 is induced by the pairing �, i.e.,

�? D
X
�2za

� r��1X
lD1

r�e�;l ˝ e�;r��l

�
; (7.13)

We write 00B, 0sB, s0B, and ssB for the projections of xB on the adequate subspaces in
both arguments, and likewise for R.

Corollary 7.12. Under the assumptions of Proposition 7.9, we have

ssxB.u; v/ D
1

uC v
.�? � ssR.u/ ? ssR?.v//;

s0xB.u; v/ D
�1

uC v
.s0R.u/C ssR.u/ ? s0R?.v//;

0sxB.u; v/ D
�1

uC v
.0sR?.v/C 0sR.u/ ? ssR?.v//;

00xB.u; v/ D
�1

uC v
.00R.u/C 00R?.v/C 0sR.u/ ? s0R?.v//;

and the following compatibility relations hold:

ssR.u/ ? ssR?.�u/ D �?;
ssR.u/ ? s0R?.�u/ D �s0R.u/;
0sR.u/ ? ssR?.�u/ D �0sR?.�u/;
0sR.u/ ?s0 R?.�u/ D �00R.u/ � 00R?.�u/:
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The structure of the first line is familiar from Givental formalism and from [33,
Appendix B], but the other three are new.

7.2.4. Primary differentials and their descendants.

Definition 7.13. We consider a new family of meromorphic differentials on zC , in-
dexed by � 2 za and k > 0:

dy� �
�k
WD D

xk.d��
�yk
/; where D.'/ WD �d.'=dzx/: (7.14)

For k 2 Œr��, they are equal to d��
�k

, while the k > r� ones are called descendants.
Borrowing the language of Frobenius manifolds, we call .d��

�k
/�:k the canonical basis

and .dy� �
�k
/�;k the flat basis.

The aim of this section is to compute the change of basis, from the canonical
basis to the flat basis of differentials, when zC is smooth compact connected as in the
previous section. This generalises computations done in [33] for simple ramifications.
As we shall see in Section 7.5.4, the correspondence between topological recursion
and intersection theory takes a particularly nice form in the y�-basis.

By an easy recursion from (7.12), passing from � to y� is change of basis with trian-
gular structure. Thus, there exist scalars A

� � �
�k �l

�
indexed by �;� 2 za and k;m > 0,

such that
d��
�k
D

X
�2za
m>0

A
� � �
�k �m

�
dy� ��m; (7.15)

where the sum on the right-hand side is finite.

Definition 7.14. We introduce

A�;�.u; v/ D
� X
k;l>0

A
� � �
�k �l

�
kŠ.r�/e

�;yk
˝ e

�;yl
u
xkv
xl
�
2 V� ˝ V� ŒŒu; v��; �; � 2 za;

xA.u; v/ D
� X
�;�2za

A�;�.u=r�; v/
�
2 V ˝2ŒŒu; v��;

�_ D
X
�2za

r�X
kD1

ke�;k ˝ e�;k :

Note that in xA we do not rescale the variable v, unlike for xB. Due to the definition of
the primary differentials, we have xA.0; v/ D xA.0; 0/ D �_. We use the notation ss for
the projection to .V s/˝2 as in Definition 7.11.

Proposition 7.15. Assume that zC is a smooth compact connected curve, dzx is a mero-
morphic 1-form on zC and !0;2 is a fundamental bidifferential of the second kind on zC .
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We have
xA.u; v/ D

�_ � uxB.u; 0/ ? �_

1 � uv
:

In particular,
ssxA.u; v/ D

R.u/ ? �_

1 � uv
:

Proof. Inserting the change of basis (7.15) into relation (7.12) and identifying the
coefficient of dy���m yields, for any �; � 2 za and k;m > 0,

A
h
� �
�k �mCr�

i
D
k C r�

r�
A
h

� �
�.kCr�/ �m

i
C F0;2

h
� �
�k m�r�

i m
kr�

ım<r� ;

where by convention A with nonnegative lower indices vanish. Multiplying this equal-
ity by kŠ.r�/e

�;yk
˝ e�; ymu

xkv xm and summing over k;m > 0, we obtain

vA�;�.u; v/ D .r�u/�1.A�;�.u; v/ � A�;�.0; v//

C

X
k>0

r��1X
mD1

F0;2

h
� �
�k m�r�

i
.k � r�/Š

.r�/
m

r�
e
�;yk
˝ e�;mu

xk

D .r�u/
�1.A�;�.u; v/ � A�;�.0; v//

C

� X
k;l>0

F0;2
� � �
�k �l

�
.k� r�/Š

.r�/.l� r�/Š
.r�/e

�;yk
˝ e

�;yl
u
xk0
xl
�
? �_

D .r�u/
�1.A�;�.u; v/ � A�;�.0; v//C B�;�.u; 0/ ? �_;

where we have used �.e�;l ; e�;m/ D r�1� ı�;�ılCm;r� , the fact that .l � r�/Š.r�/ D 1
when l < r�, which are the only terms contributing to the sum, and recognised
B�;�.u; 0/ from Definition 7.7. We now make the substitution u 7! u=r�, sum over
�; � 2 za and use xA.0; v/ D �_. This results in

vxA.u; v/ D u�1.xA.u; v/ � �_/C xB.u; 0/ ? �_;

whose solution is
xA.u; v/ D

�_ � uxB.u; 0/ ? �_

1 � uv
:

As the projection of �_ onto .V s/˝2 coincides with �? ? �_, we deduce

ssxA.u; v/ D
.�? � uxB.u; 0// ? �_

1 � uv
;

where we recognise R.u/ from Definition 7.11.
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7.3. Review of Witten r-spin classes

For r � 2, we denote by wrspin
g;n .k1; : : : ; kn/ the Witten r-spin class, first imagined

by [60] and constructed in [26, 52], cf. also [50]. For all integers g; n � 0 such that
2g � 2C n > 0 and k1; : : : ; kn 2 Z, this is a Chow class

wrspin
g;n .k1; : : : ; kn/ 2 CH

�. xMg;n/:

It is defined via the moduli space of r-spin structures xMrspin
gIk1;:::;kn

parametrizing
pointed curves .C;p1; : : : ; pn/ with a line bundle L! C together with an isomorph-
ism of L˝r to K log

C .�
Pn
iD1 kipi /. Denoting by C the universal curve and by L the

universal line bundle, and considering the projection

L! C
�
�! xM

rspin
gIk1;:::;kn

p
�! xMg;n;

the naive definition is

wrspin
g;n .k1; : : : ; kn/ D r

�g p�ctop..R
1��L/

_/:

This works in genus 0, but if g > 0, then R1��L is not a vector bundle as R0��L is
non-zero, so the general construction is more involved. For positive ki , Witten’s class
vanishes if one of the ki is divisible by r . It is concentrated in codimension3

D D
.r � 2/.g � 1/ � nC

Pn
iD1 ki

r
: (7.16)

In particular, the class vanishes unless the right-hand side of (7.16) is an integer, and
its integration on xMg;n vanishes unless D D dim xMg;n D 3g � 3C n.

We are primarily interested in indices ranging over Œr�, or Œr � 1� since the class
vanishes for index equal to r , but the following property, conjectured by Jarvis–
Kimura–Vaintrob [42, Descent Axiom 1.9], explains the appearance of the r-fold
factorial in all our formulas, see also [27, Lemma 4.2.8].

Lemma 7.16 ([52, Proposition 5.1]). Let g; n; k1; : : : ; kn � 0 be integers such that
2g � 2C n > 0, and decompose ki D dir C ai with ai 2 Œr� and di � 0. We have

wrspin
g;n .k1; : : : ; kn/ D w

rspin
g;n .a1; : : : ; an/

nY
iD1

r�di .k � r/Š.r/ 
di
i :

This formula is consistent with the case k 2 Œr� due to the initial condition in
definition (7.1) of the r-fold factorial.

3The notion of codimension for Chow classes refers to homology. Therefore, when the
Chow class can be realised by a cohomology class, this codimension is twice the cohomological
degree.
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Remark 7.17. Witten’s class can be interpreted as a cohomological field theory in
the following way: its vector space V D V rspin has a basis .ei /r�1iD1 and we define for
a1; : : : ; an 2 Œr � 1�

W rspin
g;n .ea1 ˝ � � � ˝ ean/´ wrspin

g;n .a1; : : : ; an/ 2 CH
�. xMg;n/:

The vector space V rspin is equipped with product and multiplication

.ea j eb/ D
ıaCb;r

r
; .ea1 � ea2 j ea3/ D W0;3.ea1 ˝ ea2 ˝ ea3/ D ıa1Ca2Ca3;rC1:

We included a factor r�1 to align with (7.5). It could be removed by rescaling the
product without changing the class W rspin

g;n and without effect on the formulas we are
going to write.

We define the partition function of the r-spin theory by

ZrspinŒ.xk/k>0�

D exp
� X

g;n2Z�0
2g�2Cn>0

„g�1

nŠ

X
k1;:::;kn>0

�Z
xMg;n

wrspin
g;n .k1; : : : ; kn/

� nY
iD1

rb
ki
r ckixki

�

D exp
� X

g;n2Z�0
2g�2Cn>0

„g�1

nŠ

X
a1;:::;an2Œr�1�
d1;:::;dn�0

�Z
xMg;n

wrspin
g;n .a1; : : : ; an/

nY
iD1

 
di
i

�

�

nY
iD1

.dir C ai /Š
.r/xdi rCai

�
;

where we took into account the dimension constraint (7.16) to get the second line. Due
to the aforementioned vanishing, it is independent of the times with indices divisible
by r . The function Zrspin was identified in [39] with the tau function for the r-KdV
hierarchy. It is also known that Zrspin satisfies W.glr/-constraints; see [9] for the
history of this result. From there, Milanov proved in [48] that Zrspin is the partition
function of the Airy structure of Theorem 2.10 with .r; s/ D .r; r C 1/, as well as the
topological recursion à la Bouchard–Eynard [14] for the associated correlators

!rspin
g;n .�1; : : : ; �n/ D

X
a1;:::;an2Œr�1�
d1;:::;dn�0

�Z
xMg;n

wg;n.a1; : : : ; an/

nY
iD1

 
di
i

�

�

nY
iD1

.dir C ai /Š
.r/ d�i

�
driCaiC1
i

: (7.17)

This result was apparently also obtained by Bouchard and Eynard in an unpublished
draft, and appeared in [30] in a form closer to the one we state here.



Higher Airy structures and topological recursion for singular spectral curves 117

Theorem 7.18. The correlators !rspin are computed by the topological recursion for
the spectral curve (without crosscap)

x.�/ D �r ; y.�/ D �
�

r
; !0;2.�1; �2/ D

d�1d�2
.�1 � �2/2

: (7.18)

Proof. We start from [30, Theorem 7.3], which shows that the topological recursion
for the spectral curve

x.z/ D zr ; y.z/ D z; !0;2.z1; z2/ D
dz1dz2
.z1 � z2/2

(7.19)

yields X
a1;:::;an2Œr�1�
d1;:::;dn�0

.�r/2�2g�n
�Z

xMg;n

wrspin
g;n .a1; : : : ; an/

nY
iD1

 
di
i

�

�

nY
iD1

.dir C ai /Š
.r/ dzi

z
driCaiC1
i

: (7.20)

The spectral curve (7.18) can be obtained from (7.19) by multiplying y by �1
r

. This
multiplies (7.20) by .�r/2g�2Cn. So the factors of r cancel, and we indeed obtain the
correlators !rspin

g;n .�1; : : : ; �n/.

7.4. Deformations on Witten r-spin classes

We now recall well-known actions on family of classes, originating from the work of
Givental. As our focus is not on cohomological field theories, some of the actions we
allow may not preserve this property and do not belong stricto sensu to the Givental
group. See, e.g., [50, 54, 57] for more background.

7.4.1. Translations. Given a formal series T.u/ 2 uV rspinJuK, we can define a new
family of Chow classes

ŒyT �W rspin�g;nW .V
rspin/˝n ! CH�. xMg;n/:

We first decompose
T.u/ D

X
d�1

a2Œr�1�

TrdCa eaud

and assume that TrC1 ¤ 1. Then we introduce

zT.u/ WD
T.u/ � TrC1e1u

1 � TrC1
D

X
d�1

a2Œr�1�
.d;a/¤.1;1/

TrdCa
1 � TrC1

ea u
d
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and set

ŒyT �W rspin
g;n �.�/ D

X
m�0

1

mŠ
.�m/�W

rspin
g;nCm.�˝ zT. nC1/˝ � � � ˝ zT. nCm//;

where �mW xMg;nCm!
xMg;n is the forgetful morphism. This definition is well-posed,

i.e., the sum has finitely many non-zero terms. Indeed, if we evaluate on
Nn
iD1 eai ,

the codimension (after pushforward) of the summand proportional to
Qm
jD1 Tdj rCbj

with dj r C bj � r C 2 is

1

r

�
.g � 1/.r � 2/ � .nCm/C

nX
iD1

ai C

mX
jD1

.dj r C bj /

�
�m

�
1

r

�
.g � 1/.r � 2/ � nC

nX
iD1

ai

�
C
m

r
;

which for fixed g; n; a1; : : : ; an becomes larger than dim xMg;n D 3g � 3C n for m
large enough, forcing this summand to vanish. The coefficient TrC1 plays a special
role, which reflects the dilaton equation

.p1/�.w
rspin
g;nC1.a1; : : : ; an; 1/ �  nC1/ D .2g � 2C n/w

rspin
g;n .a1; : : : ; an/:

The change from T to zT reflects this.

7.4.2. Sums over stable graphs. Let now V be a finite-dimensional vector space
and consider a family of classes

�g;nW V
˝n
! CH�. xMg;n/; g; n 2 Z�0; 2g � 2C n > 0:

Given a symmetric formal power series B.u1;u2/2 V ˝2Ju1;u2K, we can define a new
such family ŒyB ��g;n�g;n by sums over stable graphs.

Let Gg;n be the set of stable graphs of type .g; n/. For a vertex v in a stable graph,
we denote by h.v/ the genus and by k.v/ the valency. Then

ŒyB ���g;n D
X
�2Gg;n

1

jAut�j
�� .��/�

h Y
v2Vert.�/

�h.v/;k.v/
Y

¹e;e0º2Edge.�/

B. e;  e0/
i
;

where �� W
Q
v2Vert.�/

xMh.v/;k.v/ !
xMg;n is the natural inclusion of the boundary

stratum associated to � . To read this formula, half-edges label the punctures on the
curves whose moduli spaces sit at the vertices. So, we have  -classes  e;  e0 asso-
ciated to an edge ¹e; e0º, and for each half-edge there is a copy of V � coming from
the vertex it starts from, and a copy of V coming from the contribution of the edge
it belongs to. The symbol �� indicates that we pair them in the natural way. This
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definition is well-posed because the dimension of the moduli spaces at the vertices
is smaller than the one of xMg;n, so that only finitely many powers of  -classes can
contribute in the sum.

Remark 7.19. This differs slightly from the so-called R-action in Givental form-
alism, by the fact that we do not decorate leaves of the stable graph, and we do not
assume that B has a factorisation property in terms of anR-matrix in the style of (7.7).

7.5. Intersection theory for regularly admissible spectral curves

Let � D .C;x;y;!0;2/ be a regularly admissible spectral curve equipped with a funda-
mental bidifferential of the second kind. In particular, C must be smooth, and we can
write C and a instead of zC and za, respectively. In this context, as in Definition 7.11,
we rather take

V D
M
˛2a

V r˛spin:

This amounts to set e˛;r˛ D 0 in all subsequent formulas.
Following Definition 7.6, we have a generating series

T.u/ WD
�X
˛2a

e˛;1u
�
C LCtot.!0;1/

D

X
˛2a

�
e˛;1uC

X
k>0

.k � r˛/Š
.r˛/ F0;1Œ

˛
�k � e˛;yk u

xk
�

DW

X
˛2a

X
k>0

T˛;k e˛;yk u
xk : (7.21)

Equivalently, the definition of T means that we have the expansion

Loc˛.y � y.˛// D �
�

r˛
C

X
k>0

kŠ.r˛/T˛;kCr˛
r˛

�kd�

when z ! ˛ in the local coordinate such that x D x.˛/C �r˛ . Due to the regularly
admissible condition, we indeed have T.u/ 2 O.u/ and

T˛;r˛C1 D 1C F0;1
� ˛
�.r˛C1/

�
¤ 1;

so we can use it to act on Witten r˛-spin class. Recall that we have a second generating
series B.u; v/ from Definition 7.7.

Definition 7.20. We let these generating series act on the direct sum of Witten classes
to define

��
g;n WD

h
yByT �

�M
˛2a

W r˛spin
�i
g;n
W V ˝n ! CH�. xMg;n/:
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Theorem 7.21. If � D .C; x; y; !0;2/ is a regularly admissible spectral curve equip-
ped with a fundamental bidifferential of the second kind !0;2 and zero crosscap form,
then for 2g � 2C n > 0,

.L�tot/
˝n.!g;n/ D

Z
xMg;n

��
g;nQn

iD1.1 � �i i /
;

where �i is the variable in the i -th Laplace transform.

Proof. The spectral curve

x0.
˛
z / D z

r˛ ; y0.
˛
z / D �

z

r
; !0;2

�
˛1 ˛2
z1 z2

�
D
ı˛1;˛2dz1dz2
.z1 � z2/2

has TD 0 and BD 0, hence�� D
L
˛2aW

r˛spin
g;n . It is obtained by taking independent

copies of (7.18) indexed by ˛ 2 a. So, its correlators are equal to (7.17), that is,

!0g;n
�
˛1 ��� ˛n
z1 ��� zn

�
D

X
d1;:::;dn�0
li2Œr˛i �

�Z
xMg;n

W 0
g;n

� nO
iD1

e˛i ;li

� nY
iD1

 
di
i

�

�

nY
iD1

.dir˛i C li /Š
.r˛i / dzi

z
di r˛iCliC1

i

; (7.22)

where W 0
g;n D

L
˛2a W

r˛spin. Applying
Nn
iD1 L�˛i to equation (7.22) cancels the

factorials and replaces z�.di r˛iCliC1/dz with e�
˛i ;li

�di . The sum over di can then be
performed, and this entails the claim in this special case.

Applying Theorem 5.23 to the special case, let Z0 be the partition function of the
Airy structure corresponding to this special case. Its coefficients are

F 0g;n
� ˛1 ��� ˛n
k1 ��� kn

�
WD

�Z
xMg;n

Wg;n

� nO
iD1

e
˛i ;
yki

� nY
iD1

 
xki
i

� nY
iD1

ki Š
.r˛i /: (7.23)

It corresponds to F 00;1Œ
˛

�.r˛C1/ � D �1.
Applying now Theorem 5.23 to a general regularly admissible spectral curve, the

partition function of the corresponding Airy structure is

Z D exp
� 1
2„

X
˛;ˇ2a
k;l>0

F0;2

h
˛ ˇ
�k �l

iJ ˛
k
J
ˇ

l

k l

�
�Z1;

Z1 D exp
�1
„

X
˛2a
k>0

.F0;1Œ
˛
�k �C ık;r˛C1/

J ˛
k

k

�
�Z0:
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The operation taking Z0 to Z1 is the shift of times

x˛;k ! x˛;k C
F0;1Œ

˛
�k �C ık;r˛C1

k
D x˛;k C

T˛;k
kŠ.r˛/

;

taking into account (7.21). In terms of the coefficients F 1g;n of Z1, we get

F 1g;n
� ˛1 ��� ˛n
k1 ��� kn

�
D

X
m�0

1

mŠ

X
ˇ1;:::;ˇn2a
l1;:::;lm>0

F 0g;nCm

h
˛1 ��� ˛n ˇ1 ��� ˇm
k1 ��� kn l1 ��� lm

i mY
iD1

Tˇi ;li
li Š
.rˇi /

D

�Z
xMg;n

ŒyT �W 0�g;n

� nO
iD1

e
˛i ;
yki

� nY
iD1

 
xki
i

� nY
iD1

ki Š
.r˛i /

by using (7.23) and comparing with Section 7.4.1. Note the cancellation of the factori-
als that was the motivation for our definition of T in (7.21). Applying L�tot to the
corresponding correlators kills the remaining factorials, we would prove the desired
formula in the case B D 0.

For general B, we should still take Z1 to Z, and this amounts at the level of
coefficients to summing over stable graphs. Comparing with Section 7.4.2, one can
check in a similar way that the factorials completely disappear, so that the sum over
di becomes the geometric series in the Laplace variable �i .

7.5.1. The conjectural .r; s/ classes. Consider the basic case of irregularly admiss-
ible smooth spectral curves with one ramification point:

x D zr ; y D �
zs�r

r
; !0;2.z1; z2/ D

dz1dz2
.z1 � z2/2

;

with r � 2, s 2 Œr � 1� and r D ˙1 mod s. It corresponds to the Airy structures of
Theorem 2.10, already obtained in [9]. The coefficients of its partition function have
the following basic properties from Corollary 2.19 and Proposition 6.1:

(i) Homogeneity: Fg;nŒp1; : : : ; pn� D 0 unless we have
Pn
mD1 pm D s.2g �

2C n/.

(ii) Dilaton equation: Fg;nC1Œs; p1; : : : ; pn� D s.2g � 2C n/Fg;nŒp1; : : : ; pn�
for 2g � 2C n > 0.

(iii) Special values:

F1;1Œp� D
r2 � 1

24
ıp;s;

F0;3Œp1; p2; p3� D c p1p2p3ıp1Cp2Cp3;s;

where c is as in equation (6.4).
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(iv) If s D 1, then F0;n D 0 for any n � 3. Indeed, as c D 0 in this case, we
have F0;3 D 0, and as it is the only initial data needed for topological recur-
sion (2.32) in genus 0, all the genus 0 sector vanishes.

(v) Fg;nŒp1; : : : ; pn� D 0 whenever there exists i 2 Œn� such that r jpi .

Remark 7.22. There is no string equation, as the operator HiD2;kD�1 is not part of
the Airy structure.

Mimicking Theorem 7.18 and taking into account these properties, we are led to
propose the following conjecture, in a slightly more precise form than [9, Section 6.2].

Conjecture 7.23. For each r � 2 and s 2 Œr � 1� such that r D ˙1 mod s, there
exist cohomology classes w.r;s/g;n .a1; : : : ; an/ 2 CH

�. xMg;n/ indexed by ai 2 Œr� and
g; n 2 Z�0 such that 2g � 2C n > 0, so that

(o) for any di � 0,

Fg;nŒd1r C a1; : : : ; dnr C an�

D

nY
iD1

.dir C ai /Š
.r/

Z
xMg;n

w.r;s/g;n .a1; : : : ; an/

nY
iD1

 
di
i I (7.24)

(i) w
.r;s/
g;n .a/ have pure Chow codimension

2
�Pn

iD1 ai � s.2g � 2C n/

r
C .3g � 3C n/

�
I

(ii) denoting by � W xMg;nC1!
xMg;n the forgetful morphism, we have the dilaton

equation
 nC1�

�.w.r;s/g;n .a// D w
.r;s/
g;nC1.s; a/I (7.25)

(iii) we have the special values

w
.r;s/
0;3 .a1; a2; a3/ D cıa1Ca2Ca3;s1 2 H

0. xM0;3/;

w
.r;s/
1;1 .a/ D ıa;s

r2 � 1

s
 1 2 H

2. xM1;1/I

(iv) w
.r;sD1/
0;n D 0 for all n;

(v) w
.r;s/
g;n .a1; : : : ; an/ D 0 whenever there exists i 2 Œn� such that ai D r .

The conjecture is proved in the case .r; s/D .2; 1/ by Norbury [49] and s D r � 1
for general r � 2 by Chidambaram, Garcia-Failde and Giacchetto [25]. They construct
w
.r;r�1/
g;n as a cohomology class obtained by pushforward from the moduli space of r-

spin curves; in their work, it is denoted by ‚rg;n, or simply by ‚g;n if r D 2.
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Assuming Conjecture 7.23 holds, we will deform formula (7.24) to generalise
Theorem 7.21 for any smooth admissible spectral curve. Before this, we need to dis-
cuss action of translation and sums over stable graphs on the .r; s/ class.

7.5.2. Deformation of the .r; s/ classes. We introduce

W .r;s/
g;n W .V

rspin/˝n ! H�. xMg;n/;

nO
iD1

eai 7! w.r;s/g;n .a1; : : : ; an/:

If we have a formal series T.u/ 2 V rspinŒŒu��, we will see that under certain conditions,
we can define analogously to Section 7.4.1 a new family of cohomology classes

ŒyTW .r;s/�g;nW .V
rspin/˝n ! H�. xMg;n/:

Assuming Ts ¤ 1, this is done in terms of the modified generating series

zT.u/ WD
T.u/ � Tses
1 � Ts

D

X
d�0

a2Œr�1�
rdCa>s

TrdCaeaud

1 � Ts

via the formula

ŒyTW .r;s/�g;n.�/ D
X
m�0

1

mŠ
.�m/�W

.r;s/
g;nCm.�˝ zT. nC1/˝ � � � ˝ zT. nCm//; (7.26)

where �mW xMg;nCm !
xMg;n is the forgetful morphism. As in (7.4.1), the handling

of Ts is tailored to be compatible with the dilaton equation (7.25).

Lemma 7.24. Assume that Ts ¤ 1 and Ta D 0 for a < s. Then equation (7.26) is well-
defined, i.e., for any evaluation on an element of .V rspin/˝n, the sum on the right-hand
side is finite.

Proof. The argument is similar to Section 7.4.1. If we evaluate on
Nn
iD1 eai , due

to .i/ the complex codimension of the summand proportional to
Qm
jD1 Tdj rCbj with

dj r C bj � s C 1 is

1

r

�
s.2g� 2C nCm/�

nX
iD1

ai �

mX
jD1

.dj r C bj /

�
�
1

r

�
s.2g� 2C n/�

nX
iD1

ai �m

�
;

which for fixed a1; : : : ; an is negative for m is large enough, forcing this summand to
vanish.

On the other hand, the action of any B 2 V rspinŒŒu; v�� via sums over stable graphs
is well-defined since it always involves finite sums.
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7.5.3. Intersection theory for admissible smooth local spectral curves. Let � D

.C; x; y; !0;2/ be an admissible smooth spectral curve equipped with a fundamental
bidifferential of the second kind. Recall from Section 7.2 the definition of the vector
space V and the generating series T and B that can be associated to � .

Definition 7.25. We let them act on the direct sum of .r˛; s˛/-classes to define

��
g;n D

h
yByT
�M
˛2a

W .r˛ ;s˛/
�i
g;n
W V ˝n ! CH�. xMg;n/:

Here we suppose the .r; s/ class is a Chow class to put them on the same footing as the
Witten r-spin classes, and denote W .r;rC1/ WD W rspin for uniformity. The admissibil-
ity condition for irregular ramification points matches the condition of Lemma 7.24,
so the definition is well-posed.

Theorem 7.26. Assume Conjecture 7.23 holds, and let � D .C; x; y; !0;2/ be an
admissible smooth spectral curve equipped with a fundamental bidifferential of the
second kind !0;2 and zero crosscap form. Then, for 2g � 2C n > 0

.L�tot/
˝n.!g;n/ D

Z
xMg;n

��
g;nQn

iD1.1 � �i i /
;

where �i is the variable of the i -th Laplace transform.

Proof. The proof, which relies on the correspondence of Theorem 5.23 – already
proved in [9] – is similar to that of Theorem 7.21, so we omit the details: the regular
ramification points are treated by Theorem 7.21 itself, and the irregular ramification
points using Section 7.5.2.

7.5.4. Intersection numbers on the flat basis.

Definition 7.27. Let � D .C; x; y; !0;2/ be a spectral curve equipped with a funda-
mental bidifferential of the second kind. We say that � is nearly compact if there exists
a smooth compact connected curve xC containing zC such that dzx admits an analytic
continuation to a meromorphic 1-form on xC without zeroes on xC n zC , and !0;2 admits
an analytic continuation as a fundamental bidifferential of the second kind on xC .

This definition is tailored to allow zx to be multivalued (for instance, due to log-
arithmic singularities) on xC . Many examples of non-compact but nearly compact
spectral curves can be found in mirror symmetry and in Hurwitz theory. In the nearly
compact case, the results of Sections 7.2.3 and 7.2.4 apply to xC : we have the factor-
isation property for xB via the R-matrix (Corollary 7.12), and we can consider the basis
of primary differentials and their descendants on xC (Proposition 7.15).
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Definition 7.28. We introduce the covector of primary differentials:

d„.z/ D
� X

�2za
a2Œr��

d� ��a.z/ e
�
�;a

�
2 H 0. zC ;K zC .�za//˝ V

�:

Corollary 7.29. Consider the situation described in Theorem 7.21 or Theorem 7.26,
and assume that the spectral curve � is nearly compact. We have the following decom-
position on the basis of primary differentials and their descendants:

!g;n.z1; : : : ; zn/ D

Z
xMg;n

��
g;n ˝

� nO
iD1

d„.zi /
�
�

� nO
iD1

R. i / ? �_

1 �Di i

�
:

Here, Di is the operator D W ' 7! �d.'=dzx/ acting from the right on the 1-forms in
d„.zi /, and “�” means that the first tensor factor from the i -th factor on the right
must be inserted by the i -th position in the multilinear map ��

g;n, while the second
tensor factor must be inserted in the linear form d„i .zi /.

Proof. Under the assumptions, we already know that the coefficients of decomposi-
tion of the !g;n on the �-basis are

Fg;n
� �1 ��� �n
k1 ��� kn

�
D

Z
xMg;n

��
g;n..e�i ;yki

/niD1/

nY
iD1

ki Š
.r�i / 

xki
i : (7.27)

We rather want to express them on the y�-basis. With the change of basis (7.14) this
yields:

!g;n.z1; : : : ; zn/

D

X
�1;:::;�n2za
k1;:::;kn>0

X
�1;:::;�n2za
l1;:::;ln>0

�Z
xMg;n

��
g;n.e�1;yk1

˝ � � � ˝ e
�n;ykn

/

nY
iD1

ki Š
.r�i / 

xki
i

�
� A

� �i �i
�ki �li

�
dy� �i
�li
.zi /

D

Z
xMg;n

��
g;n ˝

� nO
iD1

d„.zi /
�

�

nO
iD1

� X
�i ;�i2za
ki ;li>0

A
� �i �i
�ki �li

�
ki Š

.r�i /e
�i ;
yki
˝ e�i ;li  

xki
i D

xli
i

�

D

Z
xMg;n

��
g;n ˝

� nO
iD1

d„.zi /
�
�

nO
iD1

xA. i ;Di /;

where “�” is the contraction of multilinear maps with tensors in the order prescribed by
the statement of the claim, and Di acts from the right on the 1-forms in d„.zi /. The
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situations of Theorem 7.21 or Theorem 7.26 correspond to smooth spectral curves,
for which (7.27) vanishes whenever one of the ki is divisible by r�i (see item (v) of
Section 7.5.1). Subsequently, we can replace xA. i ;Di / by its projection ssxA. i ;Di /.
We conclude by using the second formula of Proposition 7.15.

7.5.5. TR-ELSV formula and quasi-polynomiality. In the situation of Corolla-
ry 7.29, let P � xC be a set of points which are not zeroes of dzx. Given p 2 P ,
we introduce

dp WD .�ordpdzx/ 2 Z�0; cp D Res
p

dzx;

and we choose a local coordinate X near p such that X.p/ D 0 and

dzx D

´
cp

dX
X

if dp D 1;

X�dpdX if dp ¤ 1:

Definition 7.30. We introduce for .p;`/ 2P �Z>0 and� 2 za, k 2 Œr�� the quantities

S
� p �
` �k

�
D Res
zDp

d��
�k
.z/

X.z/`
D Res
zDp

Res
z0D�

k !0;2.z; z
0/

X.z/`�.z0/k
;

S
� p
`

�
D

X
�2za
k2Œr��

S
� p �
` �k

�
e��;k :

They give the all-order series expansion (indicated with the symbol�) of the primary
differentials near p:

d„.z/ �
z!p

d
�X
`>0

S
� p
`

�X`
`

�
and are closely related to the S -matrix in Givental formalism.

Lemma 7.31. With the convention that D acts from the right on primary differentials,
we have for p 2 P

d„.z/
1

1 �D 
�
z!p

8̂<̂
: d

�P
`>0

S
h
p
`

i
1Cc�1p ` 

X`

`

�
if dp D 1;

d
�P

`>0 S
� p
`

�
G `
dp�1

..dp � 1/X
dp�1 /X

`

`

�
otherwise;

where in the second line we introduced

Ga.x/ WD
X
m�0

.�1/m
m�1Y
jD0

.j C a/xm D

Z 1
0

e�t=x

.1C t /a
dt
x
D
e1=x�.1 � a; 1

x
/

xa
;

and �.1 � a; x/ is the incomplete Gamma function.
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Proof. Let us write for uniformity dzx D �pX�dpdX with �p D cp ¤ 0 if dp D 1 and
�p D 1 otherwise. The operator D can be expressed in terms of X :

D' D �d
�Xdp'
�pdX

�
:

In particular, for ` > 0

D.X`�1dX/ D �
.dp � 1C `/

�p
Xdp�1C`�1dX;

and by induction for m � 0

Dm.X`�1dX/

D

´
.�1/m.`=cp/

mX`�1dX if dp D 1;

.�1/m.dp � 1/
m
Qm
jD1.j C

`
dp�1

/Xm.dp�1/C`�1dX otherwise:

We then multiply by  m and sum over m � 0.

Since p is not a zero of dzx, for 2g � 2 C n > 0 the form !g;n.z1; : : : ; zn/ is
holomorphic at zi D p 2 P , and so we have an all-order series expansion of the form

!g;n.z1; : : : ; zn/ � d1 � � � dn

� X
`1;:::;`n>0

Hg;n
� p1 ��� pn
`1 ��� `n

� nY
iD1

X
`i
i

`i

�
:

Equivalently,

Hg;n
� p1 ��� pn
`1 ��� `n

�
D Res
z1Dp1

� � � Res
znDpn

!g;n.z1; : : : ; zn/Qn
iD1X.zi /

`i
:

When we only expand near simple poles of dzx, the formula for Hg;n becomes partic-
ularly simple due to Lemma 7.31.

Corollary 7.32 (TR-ELSV formula). Under the assumptions of Corollary 7.29 and
assuming that P � xC is a set of simple poles of dzx, we have for 2g � 2 C n > 0,
p1; : : : ; pn 2 P and `1; : : : ; `n > 0

Hg;n
� p1 ��� pn
`1 ��� `n

�
D

Z
xMg;n

�
��
g;n ˝

nO
iD1

S
� pi
`i

�
1C c�1pi `i i

�
�

� nO
iD1

R. i / ? �_
�
;

where cp D Resp dzx.

Remark 7.33. Apart from the non-trivial dependence in `i contained in S , the de-
pendence in the `i is polynomial, coming from the geometric series expansion of

1

1C c�1pi `i i
;
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from which only finitely many terms contribute. This type of behavior is called “quasi-
polynomiality”. The assumptions of Corollary 7.32 in particular apply for spectral
curves of Hurwitz theory and Gromov–Witten theory, where theHg;n store the desired
enumerative invariants. Lemma 7.31 shows that, in the situation where enumerative
invariants are stored in the expansion of !g;n near points which are not simple poles
of dzx, the quasi-polynomiality is a priori destroyed and the structure is more complic-
ated: the coefficient of d.X`i .zi /=`i / will receive contributions from S

h
pi
`0
i

i
for all

`0i � `i such that .dp � 1/ divides .`i � `0i /.

8. Open intersection numbers

In this section, we shall propose precise conjectures about open r-spin intersection
numbers using the partition function of the Airy structure with twist � of cycle type
.r � 1;1/with no dilaton shift attached to the fixed point, as obtained in Theorem 2.11.
Before this, we review the relation between this partition function for r D 2 and the
open intersection theory, and Safnuk’s topological recursion [53] for it. The latter has
peculiar features related to the reducibility of the spectral curve, our general approach
shines a new light on this. These relations depend on some foundational conjectures
in open intersection theory scattered in the literature and that we make explicit.

8.1. Review of open intersection theory

The enumerative geometry of open Riemann surfaces was developed by Pandhari-
pande–Solomon–Tessler in genus 0 in [51], and its extension to all genera was an-
nounced by Solomon and Tessler. The upshot is that for g; n; b;m � 0 such that

�x� WD 2xg � 2C 2nCm > 0; xg WD 2g C b � 1; (8.1)

there is a moduli space Mg;nIb;m parametrizing Riemann surfaces of genus g with b
(unlabelled) boundary components, n labelled interior marked points and m labelled
boundary marked points, equipped with spin structure and a “grading”. It is a real
orbifold of dimension

D WD 6g � 6C 3b C 2nCm;

and admits several connected components indexed by the distribution of the boundary
marked points on the boundary components. Note that xg and x� are respectively the
genus and the Euler characteristic of the surface doubled along its boundary. This
moduli space admits a compactification xMg;nIb;m, on which one can seek to define
and calculate intersection numbers. Denoting by Li the cotangent line bundle at the
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i -th interior marked point, and according to the statement of [3, Theorem 1.1], whose
proof by Solomon and Tessler has not yet appeared, it is possible to define

h�ıd1 � � � �
ı
dn
.�@0 /

m
ig;nIb;m D 2

1�g� bCm2

Z
xMg;nIb;m

e
� nM
iD1

L˚dii ; s
�
2 Q; (8.2)

whenever d1; : : : ; dn � 0 are such that

D D

nX
iD1

2di :

Here, e is the Euler class relative to some boundary condition s, and [51, 56] give
suitable boundary conditions so that the number is unambiguously defined.

Remark 8.1. For b D k D 0, the moduli space xMg;nI0;0 coincides with the mod-
uli space of spin structures, which is a Z2-orbifold cover of the Deligne–Mumford
moduli space of pointed Riemann surfaces xMg;n. In fact, xMg;nI0;0 has two connected
components, distinguished by the parity of the corresponding spin structures. On the
component containing the even (resp. odd) spin structures, the degree of the cover is
2g�1.2g C 1/ (resp. 2g�1.2g � 1/), and the virtual fundamental class (= the Witten
2-spin class) is the fundamental class of the even component minus the one of the
odd components. After pushforward, this yields a multiple of the fundamental class
of xMg;n by a factor of

1

2
.2g�1.2g C 1/ � 2g�1.2g � 1// D 2g�1;

where the extra 1
2

comes from the Z2-orbifold structure of xMg;nI0;0. So, the conven-
tional factor of 2 in (8.2) is such that we retrieve for b D k D 0 the usual  -class
intersection

h�ıd1 � � � �
ı
dn
ig;nI0;0 D

Z
xMg;n

nY
iD1

 
di
i ;  i D c1.Li /:

We thank Ran Tessler for a remark on this point, see also [58, Lemma 6.20 and
Remark 6.21].

It is expected that one can also define geometrically boundary descendants, which
we would like to denote

h�ıd1 � � � �
ı
dn
�@k1 � � � �

@
km
ig;nIb;m 2 Q;

where now d1; : : : ; dn; k1; : : : ; km � 0 satisfy the dimension constraint

D D

nX
iD1

2di C

mX
jD1

2kj ; (8.3)
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or equivalently

3.2g � 2C nCmC b/ D

nX
iD1

.2di C 1/C

mX
jD1

.2kj C 2/: (8.4)

One could then consider the generating series

ZopenŒQI tıI t@� D exp
� X
g;b;m;n�0
x�<0

„g�1C
b
2Qb

mŠnŠ
h�ıd1 � � � �

ı
dn
�@k1 � � � �

@
km
ig;nIb;m

�

nY
iD1

.2di C 1/ŠŠt
ı
di

mY
jD1

.2kj C 2/ŠŠt
@
kj

�
;

where b is the number determined from g, n, m, di , ki via (8.3).
A combinatorial model for the intersection numbers (8.2) – i.e., without boundary

descendants – has been proposed in [3], refining [58], where only their sum over
all possible bs was obtained. As a consequence, their generating series has a matrix
integral description. It turns out this matrix integral allows naturally for the insertion
of extra parameters, thus defining a generating series of the form

ZABTŒQI tıI t@� D exp
� X
g;b;m;n�0
x�<0

„g�1C
b
2Qb

mŠnŠ
h�ıd1 � � � �

ı
dn
�@k1 � � � �

@
km
i

ABT
g;nIb;m

�

nY
iD1

.2di C 1/ŠŠt
ı
di

mY
jD1

.2kj C 2/ŠŠt
@
kj

�
:

We will not need its precise definition, which can be found in [3, (3.14) and Lem-
ma 3.2].

The Kontsevich–Penner matrix model is another important character of the story.
It is defined by

ZKP;N .ƒ/ D

Z
HN

dH
cƒ;N;„

exp
°
„
� 12Tr

�H 3

6
�
H 2ƒ

2

�±� det.ƒ/
det.ƒ �H/

�Q
;

where HN is the space of hermitian matrices of size N , and cƒ;N;„ is some normal-
izing constant. It determines a unique generating series of the form

ZKPŒQI tıI t@� D exp
� X
g;b;m;n�0
x�<0

„g�1C
b
2Qb

mŠnŠ
h�ıd1 � � � �

ı
dn
�@k1 � � � �

@
km
i

KP
g;nIb;m

�

nY
iD1

.2di C 1/ŠŠt
ı
di

mY
jD1

.2kj C 2/ŠŠt
@
kj

�



Higher Airy structures and topological recursion for singular spectral curves 131

such that for any N � 1,

ZKP
N .ƒ/ D Z

KP
h
QI
�
tıd D

„
1
2Trƒ�.2dC1/

2d C 1

�
d�0
I

�
t@k D

„
1
2Trƒ�.2kC2/

2k C 2

�
k�0

i
:

Remark 8.2. In contrast with the aforementioned works, we have included in our
definition of the generating series a variable „ which is redundant because of the
dimension constraint (8.3), and we have not written separately the contribution of
the closed Riemann surfaces (b D 0). Our definition can be obtained from [3] by the
following substitutions:

N ! Q; H ! „�
1
6H; ƒ! „�

1
6ƒ;

td ! „
d�1
3 .2d C 1/ŠŠ tıd ; sk ! „

k
3�

1
6 .2k C 2/ŠŠ t@k ;

under which �o;ext
N ! ZABT and �N ! ZKP. Our definition can be obtained from [1]

by substituting there

N ! Q; T2dC1 ! „
d�1
3 tı2dC1; T2kC2 ! „

k
3�

1
6 t@k :

Finally, note that the definition of the Kontsevich–Penner matrix model of [3] can be
obtained from the one in [1] by the substitution ˆ! ƒ �H .

It is expected that these three collections of numbers coincide.

Conjecture 8.3. There exists a geometric definition of the open intersection numbers
with boundary descendants, and it is such that Zopen D ZABT, that is

h�ıd1 � � � �
ı
dn
�@k1 � � � �

@
km
ig;nIb;m D h�

ı
d1
� � � �ıdn�

@
k1
� � � �@kmi

ABT
g;nIb;m:

Conjecture 8.4. There exists a geometric definition of the open intersection numbers
with boundary descendants, and it is such that Zopen D ZKP, that is

h�ıd1 � � � �
ı
dn
�@k1 � � � �

@
km
ig;nIb;m D h�

ı
d1
� � � �ıdn�

@
k1
� � � �@kmi

KP
g;nIb;m:

Conjecture 8.5. We have ZKP D ZABT.

Obviously, any two of the conjectures imply the third one. They are supported by
partial results:

• The specialisation of Conjecture 8.3 to t@
k
D 0 for k > 0 is proved in [3] condition-

ally to [3, Theorem 1.1], whose proof was announced by Solomon and Tessler but
has not appeared yet. The same specialisation in Conjecture 8.4 was anticipated
in [53] and proved there for g D 0; 1

2
; 1.

• The specialisation of Conjecture 8.5 to Q D 1 is proved in [1] via integrability
techniques, and the specialisation toQD˙1 in [3, Section 4.2] by matrix integral
techniques.
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• The string and dilaton equations satisfied by ZABT and ZKP are the same [3, Sec-
tion 4.3].

Alexandrov has proposed various collections of differential operators relevant to
the study of the Kontsevich–Penner model – and therefore to open intersection theory
in light of Conjecture 8.4. We summarise what is relevant for our exposition:

(a) In [1], Alexandrov used a representation of the gl1-Heisenberg algebra to
construct operators .yLo

k
/k�0 and . yM o

k
/k��2 (see equations (7.4) and (7.14)

therein) annihilating the Q D 1 specialization of ZKP.

(b) In [53], Safnuk introduced a modification of these differential operators, de-
noted by .yLk/k��1 and . yMk/k��2 (see equations (2.9) and (2.10) therein),
which still annihilate the Q D 1 specialization of ZKP.

(c) In [2], Alexandrov used a twisted representation of the Heisenberg algebra
of gl3 to construct a free field representation of the algebra W.sl3/ and oper-
ators . yLQ

k
/k��1 and . yMQ

k
/k��2 (see equation (72) therein) annihilatingZKP.

All those operators are related by taking (possibly infinite) linear combinations,
but it turns out that choosing one or the other set of operators affects the structure of
the recursion one deduces for h� � � iKP. For sake of comparison and completeness, we
review in Section 8.2 the definition of the operators in (a) and (b) and the topological
recursion with strange features that Safnuk derived from the operators in (b). In Sec-
tion 8.3, we explain that the operators in (c) directly compare to Airy structures for
� D .12/.3/ and thus provide a CEO-like topological recursion, whose structure is
more transparent and more general than [53].

8.2. Review of Safnuk’s recursion

Consider the following representation of the Heisenberg VOA for gl1:

J.z/ D
X
k2Z

Jk

zkC1
; Jk WD

8̂̂<̂
:̂
@tk if k > 0;

0 if k D 0;

�kt�k if k < 0

and introduce the normal ordered products

L.z/ D
1

2
WJ.z/2 W D

X
k2Z

Lk

zkC2
;

M.z/ D
1

3
WJ.z/3 W D

X
k2Z

Mk

zkC3
:
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These operators form a representation of the W.sl3/-algebra. The collection of oper-
ators mentioned in (a) is

yLok WD L2k C .k C 2/J2k � J2kC3 C ık;0

�1
8
C
3

2

�
;

yM o
k WDM2k C 2.k C 3/L2k � 2L2kC3 � 2.k C 3/J2kC3 C J2kC6

C

�95
12
C 6k C

4

3
k2
�
J2k C

23

4
ık;0:

Then Alexandrov proved in [1] that .yLo
k
/k�0 and . yM o

k
/k��2 annihilate the specializ-

ation of ZKP ´
yLo
k
�1 D 0; k � 0;

yM o
k
�1 D 0; k � �2:

The collection of modified operators mentioned in (b) reads

yLk WD yL
o
k;

yMk WD �
yM o
k C 2.k C 2/

yLok :

Let us sketch the strategy of Safnuk in [53] – for a better comparison, we set „ D 1
till the end of this subsection. We first rewrite these operators. To this end, we change
the currents to include as zero-modeQ D 1 and a dilaton shift (Safnuk does this later
in the computation):

zJ .z/ WD
X
k2Z

zJk

zkC1
; zJk WD Jk � ık;�3 C ık;0:

Let us also define, following Safnuk, the differential operators

D1 WD dz
�
�

d
dz
C
1

z

�
; D2 WD

.dz/2

2

� d2

dz2
�
3

z

d
dz
C
3

z2

�
;

the 1-form � D �z2dz, and the projection operators

P .i/
W CJz˙1Kdz ! CJz�2Kz�idz; i 2 ¹2; 3º:

Then, taking only the parts of the generating series that annihilate ZKPjQD1, we get

J.z/ WD zJ .z/dz;

L.z/ WD
X
k��1

dz
z2kC4

yLk D P .2/
� 1
2�

�
WJ2 W CD1J C

.dz/2

4z2

��
;

M.z/ WD
X
k��2

dz
z2kC7

yMk D P .3/
� 1

3�2

�
WJ3 W �D2J C

3.dz/2

4z2
J
��
:
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The last term in the last two lines can be absorbed by defining

J2.z/ D WJ2.z/ W C
.dz/2

4z2
; J3.z/ D J.z/ � J2.z/:

The square of J.z/ itself will not be defined due to infinite sums, and somehow defin-
ition (8.2) implements the right operator product expansion from the W.sl3/-algebra,
cf. equation (2.17). We then get the following operators annihilating ZKPjQD1:

L D P .2/
� 1
2�
.J2 CD1J/

�
; M D P .3/

� 1

3�2
.J3 �D2J/

�
:

Now, if we writeZKPjQD1 D e
F and commute this through these operators, this gives

the equations

0 D P .2/
� 1
2�
e�F .J2 CD1J/e

F
�
D P .2/

� 1
2�
.U 2 CD1U/ � 1

�
;

0 D P .3/
� 1

3�2
e�F .J3 �D2J/e

F
�
D P .3/

� 1

3�2
.U 3 �D2U/ � 1

�
;

where
U.z/ WD e�F J.z/eF D J.z/C ŒJ.z/; F �

is the operator appearing in [53]. In order to recover a spectral curve topological
recursion from this, one should define

ız WD J�.z/ D
X
k�1

dz
zkC1

@tk ; !g;n.z1; : : : ; zn/ WD ız1 � � � ıznFg;n:

If we also introduce the unstable terms

!0;1.z/ WD �.z/; !0;2 D Œı1;J2� D
dz1dz2
.z1 � z2/2

; ! 1
2 ;1
WD

dz
z
;

coming from the dilaton shift, the positive part of J.z/ and the zero mode J0 D 1,
respectively, we see that

U.z/ D ız C !0;1.z/C ! 1
2 ;1
.z/C ı�1!0;2 C

X
2g�2Cn>0

ıFg;n:

Reinterpreting the projection operators as residues with the recursion kernel results in
the following theorem.

Theorem 8.6 ([53, Theorem 5.3]). The !g;n obey a modified topological recursion
on the spectral curve with crosscap form

C; x.z/ D
z2

2
; y.z/ D �z; !0;2.z1; z2/ D

dz1dz2
.z1 � z2/2

; ! 1
2 ;1
D

dz
z
;
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given by

!g;nC1.z0; zŒn�/ D Res
wD0

�
K.2/.z0; w/.W

0
g;2;n.w;wI zŒn�/CD1!g� 12 ;nC1

.w; zŒn�//

CK.3/.z0; w/.W
0
g;3;n.w;w;wI zŒn�/CD2!g�1;nC1.w; zŒn�//

�
;

where W 0 is as in Definition 5.8 and

K.j /.z; w/ D

�
.�1/j

Z �w
�D0

!0;2.z; �/ �

Z w

�D0

!0;2.z; �/

�
1

2j.�w2dw/j�1
:

This form of the topological recursion has some odd features. For one, it is a recur-
sion of order 3, even though the degree of x is only 2. This is also noted by Safnuk,
who computes the quantum curve in [53, Theorem 7.1] and obtains the semi-classical
limit y.y2 � 2x/ D 0. Moreover, the formula does not include summation over fibers
of x – rather, the variable w is inserted several times. Finally, the operators Dj intro-
duce uncommon derivatives. Safnuk posits that these quirks come from the reducibil-
ity of the curve, but in the next section, we will see this relation is not straightforward.

8.3. Relation to topological recursion

In a previous work, it was shown that the operators in (c), i.e., in [2], coincide, up
to a change of variables, with the reduction to W.sl3/ of an W.gl3/-Airy structure,
leading to the following result.

Theorem 8.7 ([9, Proposition 6.3]). The function ZKP is the partition function of the
Airy structure of Theorem 2.11 with parameters .r1; s1; r2; s2/D .2; 3; 1;1/, t1 D 1

2
,

and Q1 D �Q2 D Q, specialised to

x12dC1 D t
ı
d ; x12dC2 D t

@
d ; x2dC1 D 0 .d � 0/: (8.5)

Thanks to Propositions 5.18 and 5.23, we can now convert this into a CEO-like
topological recursion on the reducible spectral curve consisting of the union of two
components intersecting at z D 0

C D C1 [ C2; C1W

´
x.z/ D z2;

y.z/ D �z
2
;

C2W

´
x.z/ D z;

y.z/ D 0:
(8.6)

Due to the constraintHiD1;kDdC1 �Z D 0 in the Airy structure, the partition function
only depends on the variable x1

2dC2
� x2

dC1
. Accordingly, no information is lost after

the specialisation to (8.5). More precisely, each occurrence of x1
2dC1

in a monomial
is associated with the insertion of .2d C 1/ŠŠ�ı

d
, each occurrence of x2

dC1
with the

insertion of .2d C 2/ŠŠ�@
d

, and each occurrence of x1
2dC2

with �.d C 1/ŠŠ�@
d

. Taking
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this into account and using (5.16), the suitable definition for the correlators in terms
of open intersection numbers is

!KP
h;nCm

�
1 ��� 1 2 ��� 2
z1 ��� zn znC1 ��� znCm

�
D

X
g;b2Z�0
gC b2Dh

X
NıtN@DŒn�

X
d1;:::;dn�0
k1;:::;km�0

.�1/mQb

� Y
i2Nı

�ıdi

Y
i2N@

�@di

mY
jD1

�@kj

�KP

g;jNıjIb;mCjN@j

�

Y
i2Nı

.2di C 1/ŠŠ dzi
z
2diC2
i

Y
i2N@

.di C 1/Š dzi
z
2diC3
i

mY
jD1

.kj C 1/Š dznCj

z
kjC2

nCj

;

where the number of boundaries b is determined in terms of g, n, d , k, m via (8.3).

Corollary 8.8. For g 2 1
2
Z�0 and n � 1 such that 2g � 2C n > 0, !KP

g;n is computed
by the topological recursion on the spectral curve (8.6) equipped with bidifferential
and crosscap form

!0;2
�
�1 �2
z1 z2

�
D ı�1;�2

dz1dz2
.z1 � z2/2

; ! 1
2 ;1
. �z / D .�1/

�C1Q
dz
z

for �;�1; �2 2 ¹1; 2º.

Several sanity checks of this corollary can be proposed. At Q D 0, the vari-
ables t@ become irrelevant and ZKP specialises to the Witten–Kontsevich partition
function [43, 59]

ZKPŒQ D 0; tı; t@� D
X

g�0; n�1
2g�2Cn>0

„g�1

nŠ

�Z
xMg;n

nY
iD1

 
di
i

� nY
iD1

.2di C 1/ŠŠ t
ı
di
: (8.7)

This can also be checked on the topological recursion side. Indeed, Theorem 7.18 for
r D 2 states that the topological recursion for the spectral curve

x.�/ D �2; y.�/ D �
�

2
; !0;2.�1; �2/ D

d�1d�2
.�1 � �2/2

(8.8)

produces the .g; n/-correlator for 2g � 2C n > 0:

!g;n.�1; : : : ; �n/ D
X

d1;:::;dn�0

�Z
xMg;n

nY
iD1

 
di
i

� nY
iD1

.2di C 1/ŠŠd�i
�
2diC2
i

:

Note that this case was proved before with a slightly different normalisation by
Eynard–Orantin [36], see also [35].

At Q D 0, we are in position to apply Proposition 5.27, showing that the second
component decouples, i.e., !KP

g;n

�
1 ��� 1
z1 ��� zn

�
jQD0 coincides with the correlators of (8.8).

So, the correlators of the spectral curve (8.6) at Q D 0 agree with the correlators
associated to (8.7), as predicted by the corollary.
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8.4. Review of open r-spin theory

It is expected that there exists an open analogue of Witten r-spin theory, related to a
space xMrspin

g;nIb;m
, which specialises to the open theory of Section 8.1 for r D 2. It would

give for each .g; n; b;m/ such that �x� > 0 a collection of numbers

h�ıd1.a1/ � � � �
ı
dn
.an/�

@
k1
� � � �@kmi

rspin
g;nIb;m

2 Q

indexed by di ; ki � 0 and ai 2 Œr�, which we can collect in a generating series

Zopen rspinŒQI tıI t@�

D exp
� X
g;b;n;m�0
�x�>0

„g�1C
b
2Qb

mŠnŠ

X
d1;:::;dn�0
a1;:::;an2Œr�
k1;:::;km�0

D nY
iD1

�ıdi .ai /

mY
jD1

�@kj

Erspin

g;nIb;m

�

nY
iD1

.dir C ai /Š
.r/tıai ;di

mY
jD1

.rkj C r/Š
.r/t@kj

�
: (8.9)

These numbers should vanish unless

.r C 1/.2g � 2C b C nCm/ D

nX
iD1

.rdi C ai /C

mX
jD1

.rkj C r/: (8.10)

Besides, form� 1, each insertion4 of �ı
d
.r/ should amount to inserting .�1=rdC1/�@

d
.

There are several possible choices of conventions (in particular, for orientations)
that could affect these numbers by a prefactor depending only on the topology. We fix
them by the normalisation of the consistency relations with the intersection numbers
that are already defined. For r D 2 andm� 1, we want to retrieve the open intersection
numbers of Section 8.1� nY

iD1

�ıdi .1/

mY
jD1

�@kj

�2spin

g;nIb;m

D

� nY
iD1

�ıdi

mY
jD1

�@kj

�
g;nIb;m

: (8.11)

Notice that the dimension constraint (8.4) forces b Cm to be even, so this is indeed
an identity in Q. In absence of boundaries b D m D 0, we want to retrieve the Witten

4For d D 0, this matches the normalisation [20, Theorem 1.5 and Section 6.1], namely
�ı
0
.r/ $ .�1=r/�@

0
. The �@

d
correspond to boundary descendent insertion: as they have not

been defined geometrically yet, we do not have a natural normalisation to compare to. The factor
rdC1 is natural from the numerical perspective in combination with the identity .dr C r/Š.r/ D
rdC1.d C 1/Š.
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r-spin class intersections of Section 7.3

h�ıd1.a1/ � � � �
ı
dn
.an/i

rspin
g;nI0;0 D

Z
xMg;n

wrspin
g;n .a1; : : : ; an/

nY
iD1

 
di
i :

For disks without boundary descendants – that is, .g; b/D .0; 1/ and kj D 0 – the
open r-spin intersection numbers have been defined in [19] in the form

h�ıd1.a1/ � � � �
ı
dn
.an/.�

@
0 /
m
i0;nI1;m D

Z
P xM

rspin
0;nI1;m

e
�
W ˚

nM
iD1

L˚dii ; s
�
; (8.12)

where P xM is a partial compactification of the moduli space of r-spin disks and W

is a bundle which is the open analogue of R1��L. We stress that ai in [19, 20] cor-
responds to our ai � 1. These numbers are computed explicitly for di D 0 in [20,
Theorem 1.2], and in particular

h�ı0 .a/�
@
0 i0;1I1;1 D ıa;1:

The dimension constraint (8.10) is the natural generalisation of [20, Section 6.2.1]
allowing boundary descendants, and coincides with (8.4) for r D 2.

Bertola and Yang have constructed in [8] a particular solution of the extended
r-KdV hierarchy, generalising the r D 2 construction from [18]. Up to a change of
normalisation, this solution is mentioned in [20] under the name ˆ and depends on
a redundant parameter " and times .Tk/k>0. We shall use the latter normalisation, and
for uniformity denote it by ZrBYŒ"I .Tk/k>0�. It gives, for each .xg; n; m/ such that
x� > 0 (see (8.1)), a collection of numbers

h�ıd1.a1/ � � � �
ı
dn
.an/�

@
k1
� � � �@kmi

rBY
xgInIm

by writing down the following expansion:

ZrBY�" D .�r„/ 12 I �TdrCa D .�r/dC 12� 3.drCa/2.rC1/ .tıa;d � ıa;rr
dC1t@d /

�
a2Œr�
d�0

�
D exp

� X
xg;n;m�0
�x�>0

„
xg�1
2

mŠnŠ

X
d1;:::;dn�0
a1;:::;an2Œr�
k1;:::;km�0

� nY
iD1

�ıdi .ai /

mY
jD1

�@kj

�rBY

xgInIm

�

nY
iD1

.rdi C ai /Š
.r/tıai ;di

mY
jD1

.rkj C r/Š
.r/t@kj

�
:

In absence of an extra variable in ZrBY playing the role that Q has in (8.9), one
cannot define numbers depending individually on .g; b/, but only on the doubled
genus xg D 2g C b � 1.
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Conjecture 8.9. There exists a geometric definition of the open r-spin intersection
numbers, and it satisfies

h�ıd1.a1/ � � � �
ı
dn
.an/�

@
k1
� � � �@kmi

rBY
xgInIm

D

X
g;b2Z�0
2gCb�1Dxg

h�ıd1.a1/ � � � �
ı
dn
.an/�

@
k1
� � � �@kmi

rspin
g;nIb;m

: (8.13)

This conjecture is formulated in the restricted case t@
d
D 0 for d > 0 in [20],

perhaps because no geometric construction of boundary descendants in the open r-
spin theory is available yet. Under this restriction, it is supported by the following
results:

• The r D 2 case was proved in [18], and in agreement with (8.11) we have

ZABTŒQ D 1I .tıd /d�0I .t
@
k/k�0�

D Zopen2spinŒQ D 1; .tı1;d D t
ı
d ; t
ı
2;d D 0/d�0I .t

@
k/k�0�:

• The conjecture is proved in [20] for xg D 0 for general r . In that case, there is
a single term .g; b/ D .0; 1/ in the right-hand side of (8.13).

8.5. Conjectural relation to topological recursion

We now propose a direct generalisation of Section 8.3. We consider the Airy structure
of Theorem 2.11 with

d D 2; .r1; s1I r2; s2/ D .r; r C 1I 1;1/; Q1 D �Q2 D Q; t1 D
1

r
;

which is also given in [9, Theorem 4.16]. We denote by Zr? its partition function and
we decompose its coefficients as

F r?h;nCm
�

1 ��� 1 2 ��� 2
d1rCa1 ��� dnrCan k1C1 ��� kmC1

�
D

X
g;b2Z�0
gC b2Dh

.�1/mQb

nY
iD1

.dir C ai /Š
.r/

�

mY
jD1

.kj C 1/Šh�
ı
d1
.a1/ � � � �

ı
dn
.an/�

@
k1
� � � �@kmi

r?
g;nIb;m: (8.14)
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According to Section 5.4, the corresponding correlators should be defined as

!r?h;nCm
�
1 ��� 1 2 ��� 2
z1 ��� zn znC1 ��� znCm

�
WD

X
g;b2Z�0
gC b2Dh

X
NıtN@DŒn�

X
aWNı!Œr�1�
d1;:::;dn�0
k1;:::;km�0

.�1/mQb

�

� Y
i2Nı

�ıdi .ai /
Y
i2N@

�@di

mY
jD1

�@kj

�r?
g;jNıjIb;mCjN@j

�

Y
i2Nı

.dir C ai /Š
.r/dzi

z
di rCaiC1
i

Y
i2N@

.di C 1/Šdzi
z
di rCrC1
i

mY
jD1

.kj C 1/ŠdznCj

z
kjC2

nCj

: (8.15)

Note that we have converted all �ı
d
.r/ into �r�.dC1/�@

d
, which turned the r-fold

factorial .rd C r/Š.r/ D rdC1.d C 1/Š into a usual factorial in the corresponding
factors. By Theorem 5.23, they satisfy the topological recursion on the reducible spec-
tral curve with two components intersecting at z D 0:

C D C1 [ C2; C1W

´
x.z/ D zr ;

y.z/ D �z
r
;

C2W

´
x.z/ D z;

y.z/ D 0
(8.16)

equipped with

!0;2
�
�1 �2
z1 z2

�
D ı�1;�2

dz1dz2
.z1 � z2/2

; ! 1
2 ;1
. �z / D .�1/

�C1Q
dz
z
:

For comparison, let us examine the basic properties of h� � � ir?. Firstly, due to
the constraint .J 1

kr
C J 2

k
/Zr? D 0 for k > 0 and definition (8.14), each insertion

of �ı
d
.r/ amounts to the insertion of �r�.dC1/�@

d
while incrementing the number m

by 1. Secondly, the constraint HiD2;kD0Zr? D 0 gives, by computations similar to
those of Section 2.4, the string equation�
�ı0 .1/

nY
iD1

�ıdi .ai /

mY
jD1

�@kj

�r?
g;1CnIb;m

D

nX
lD1

�
�ıdl�1.al/

Y
i¤l

�ıdi .ai /

mY
jD1

�@kj

�r?
g;nIb;m

C

mX
lD1

�
�@kl�1

nY
iD1

�ıdi .ai /
Y
j¤l

�@kj

�r?
g;nWb;m

C ıg;b;m;0ın;2ıd1;d2;0ıa1Ca2;r

C ıg;m;0ıb;n;1ıd1;0ıa1;r

C ıg;n;0ıb;m;1ık1;0; (8.17)
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with obvious vanishing conventions for insertion of negative indices. This last term
gives the special value

h�ı0 .1/�
@
0 i
r?
0;1I1;1 D 1: (8.18)

Note this is compatible with the computation of (6.32) with the specialisation t1 D 1
r

.
Indeed, the latter yields

! 1
2 ;2

�
1 2
z1 z2

�
D �rQ

dz1
z21

dz2
z22
D �Q

dz1
z21

rŠ.r/dz2
z22

;

and thus after taking (8.15) into account, (8.18) describes the only non-vanishing
intersection number for .g; nI b; m/ D .0; 1I 1; 1/. Thirdly, we have from Corol-
lary 2.20 the dilaton equation�

�ı1 .1/

nY
iD1

�ıdi .ai /

mY
jD1

�@kj

�r?
g;1CnIb;m

D .2g � 2C nCm/

� nY
iD1

�ıdi .ai /

mY
jD1

�@kj

�r?
g;nIb;m

C
r � 1

24
ıg;1ın;b;m;0 C

1

2
ıg;n;m;0ıb;2 (8.19)

and the homogeneity property which says that h
Qn
iD1 �

ı
di
.ai /

Qm
jD1 �

@
kj
ir?
g;nIb;m

van-
ishes unless the dimension constraint (8.10) holds.

We predict that the partition function Zr? describes the full open r-spin intersec-
tion theory in any genera and with arbitrary descendants.

Conjecture 8.10. There is a geometric definition of the open r-spin intersection num-
bers, and it satisfies

h�ıd1.a1/ � � � �
ı
dn
.an/�

@
k1
� � � �@kmi

rspin
g;nIb;m

D h�ıd1.a1/ � � � �
ı
dn
.an/�

@
k1
� � � �@kmi

r?
g;nIb;m:

A weaker prediction, involving only quantities whose definition is available at the
time of writing, is that the Bertola–Yang ZrBY partition function satisfies W.glr/-
constraints with zero mode values Q1 D �Q2 D 1. Including the expected normal-
isations, this would translate into the following.

Conjecture 8.11. We have for b;m > 0

h�ıd1.a1/ � � ��
ı
dn
.an/�

@
k1
� � ��@kmi

rBY
xgInImD

X
g;b2Z�0
gC b2Dxg

h�ıd1.a1/ � � ��
ı
dn
.an/�

@
k1
� � ��@kmi

r?
g;nIb;m:

In support of the conjectures, we see that the basic properties listed for h� � � ir?

match the ones listed for h� � � i in the range of parameters in which the comparison
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is possible. The dilaton equation from [20, Proposition 5.3] matches the restriction
of (8.19) to .g; b/D .0; 1/ and kj D 0. The string equation from [20, Proposition 5.2]
matches the same restriction of (8.17), and observe that in absence of boundary des-
cendants, the second sum in the right-hand side of (8.17) is absent. The identification
of �ı

d
.r/with�r�.dC1/�@

d
for d D 0 is manifest in [20, Theorem 1.1]. Their extension

to g > 0 expected in [20, Section 6.2] also matches our proposal.
Topological recursion relations (TTR) involving in a linear way the open r-spin

intersection numbers mentioned in (8.12) and the closed r-spin intersection num-
bers are given in [20, Theorem 4.1]. The information of (8.12) should be encoded
for us in F r?1

2 ;n
, as it is easy to see that the W -constraints indeed imply some quad-

ratic relation with a similar structure involving F r?0;n in a non-linear way and F r?1
2 ;n

in
a linear way. As F r?0;n contains only information from the closed sector and satisfies
W -constraints on its own, the structure somehow resembles TRR, but establishing an
exact match is left to future work.

Acknowledgements. We thank Nezhla Aghaei for participation in an early phase
of the project, Ran Tessler for his lights on open r-spin theory, and Nitin K. Chi-
dambaram for pointing out typos. We also thank the referee for their comments. The
University of Alberta respectfully acknowledges that we are situated on Treaty 6 ter-
ritory, traditional lands of First Nations and Métis people.

Funding. G.B. and R.K. benefited from the support of the Max-Planck-Gesellschaft.
During revision, R.K. was supported by the Natural Sciences and Engineering Re-
search Council of Canada, and the Pacific Institute for the Mathematical Sciences
(PIMS). The research and findings may not reflect those of these institutions.

References

[1] A. Alexandrov, Open intersection numbers, Kontsevich–Penner model and cut-and-join
operators. J. High Energy Phys. 2015 (2015), no. 8, paper no. 028 Zbl 1388.81165
MR 3402137

[2] A. Alexandrov, Open intersection numbers and free fields. Nuclear Phys. B 922 (2017),
247–263 Zbl 1373.81304 MR 3689715

[3] A. Alexandrov, A. Buryak, and R. J. Tessler, Refined open intersection numbers and the
Kontsevich–Penner matrix model. J. High Energy Phys. 2017 (2017), no. 3, paper no. 123
Zbl 1377.83107 MR 3650694

[4] J. Andersen, G. Borot, L. Chekhov, and N. Orantin, The ABCD of topological recursion.
2017, arXiv:1703.03307

[5] T. Arakawa and A. Molev, Explicit generators in rectangular affine W -algebras of type A.
Lett. Math. Phys. 107 (2017), no. 1, 47–59 Zbl 1415.17027 MR 3598875

https://doi.org/10.1007/JHEP08(2015)028
https://doi.org/10.1007/JHEP08(2015)028
https://zbmath.org/?q=an:1388.81165
https://mathscinet.ams.org/mathscinet-getitem?mr=3402137
https://doi.org/10.1016/j.nuclphysb.2017.06.019
https://zbmath.org/?q=an:1373.81304
https://mathscinet.ams.org/mathscinet-getitem?mr=3689715
https://doi.org/10.1007/JHEP03(2017)123
https://doi.org/10.1007/JHEP03(2017)123
https://zbmath.org/?q=an:1377.83107
https://mathscinet.ams.org/mathscinet-getitem?mr=3650694
https://arxiv.org/abs/1703.03307
https://doi.org/10.1007/s11005-016-0890-2
https://zbmath.org/?q=an:1415.17027
https://mathscinet.ams.org/mathscinet-getitem?mr=3598875


Higher Airy structures and topological recursion for singular spectral curves 143

[6] R. Belliard, B. Eynard, and O. Marchal, Integrable differential systems of topological type
and reconstruction by the topological recursion. Ann. Henri Poincaré 18 (2017), no. 10,
3193–3248 Zbl 1379.35273 MR 3697193

[7] M. Bergère, G. Borot, and B. Eynard, Rational differential systems, loop equations, and
application to the qth reductions of KP. Ann. Henri Poincaré 16 (2015), no. 12, 2713–2782
Zbl 1343.37061 MR 3416869

[8] M. Bertola and D. Yang, The partition function of the extended r-reduced Kadomtsev–
Petviashvili hierarchy. J. Phys. A 48 (2015), no. 19, paper no. 195205 Zbl 1317.37067
MR 3342766

[9] G. Borot, V. Bouchard, N. K. Chidambaram, T. Creutzig, and D. Noshchenko, Higher Airy
structures, W algebras and topological recursion. To appear in Mem. Amer. Math. Soc.,
arXiv:1812.08738

[10] G. Borot, B. Eynard, and N. Orantin, Abstract loop equations, topological recursion and
new applications. Commun. Number Theory Phys. 9 (2015), no. 1, 51–187
Zbl 1329.14074 MR 3339853

[11] G. Borot, B. Eynard, and A. Weisse, Root systems, spectral curves, and analysis of a
Chern–Simons matrix model for Seifert fibered spaces. Selecta Math. (N.S.) 23 (2017),
no. 2, 915–1025 Zbl 1367.14014 MR 3624903

[12] G. Borot, R. Kramer, D. Lewanski, A. Popolitov, and S. Shadrin, Special cases of the
orbifold version of Zvonkine’s r-ELSV formula. Michigan Math. J. 70 (2021), no. 2, 369–
402 Zbl 1483.14092 MR 4278700

[13] G. Borot and S. Shadrin, Blobbed topological recursion: properties and applications. Math.
Proc. Cambridge Philos. Soc. 162 (2017), no. 1, 39–87 Zbl 1396.14031 MR 3581899

[14] V. Bouchard and B. Eynard, Think globally, compute locally. J. High Energy Phys. 2013
(2013), no. 2, paper no. 143 Zbl 1342.81513 MR 3046532

[15] V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion. J. Éc. Poly-
tech. Math. 4 (2017), 845–908 Zbl 1426.14009 MR 3694097

[16] V. Bouchard, J. Hutchinson, P. Loliencar, M. Meiers, and M. Rupert, A generalized topo-
logical recursion for arbitrary ramification. Ann. Henri Poincaré 15 (2014), no. 1, 143–169
Zbl 1291.81212 MR 3147410

[17] V. Bouchard and K. Mastel, A new class of higher quantum Airy structures as modules of
W.glr /-algebras. 2020, arXiv:2009.13047

[18] A. Buryak, Equivalence of the open KdV and the open Virasoro equations for the moduli
space of Riemann surfaces with boundary. Lett. Math. Phys. 105 (2015), no. 10, 1427–
1448 Zbl 1323.35158 MR 3395226

[19] A. Buryak, E. Clader, and R. J. Tessler, Open r-spin theory I: Foundations. Int. Math. Res.
Not. IMRN 2022 (2022), no. 14, 10458–10532 Zbl 07570162 MR 4458550

[20] A. Buryak, E. Clader, and R. J. Tessler, Open r-spin theory II: The analogue of Witten’s
conjecture for r-spin disks. 2022, arXiv:1809.02536

[21] A. Buryak and R. J. Tessler, Matrix models and a proof of the open analog of Witten’s
conjecture. Comm. Math. Phys. 353 (2017), no. 3, 1299–1328 Zbl 1372.14004
MR 3652492

https://doi.org/10.1007/s00023-017-0595-9
https://doi.org/10.1007/s00023-017-0595-9
https://zbmath.org/?q=an:1379.35273
https://mathscinet.ams.org/mathscinet-getitem?mr=3697193
https://doi.org/10.1007/s00023-014-0391-8
https://doi.org/10.1007/s00023-014-0391-8
https://zbmath.org/?q=an:1343.37061
https://mathscinet.ams.org/mathscinet-getitem?mr=3416869
https://doi.org/10.1088/1751-8113/48/19/195205
https://doi.org/10.1088/1751-8113/48/19/195205
https://zbmath.org/?q=an:1317.37067
https://mathscinet.ams.org/mathscinet-getitem?mr=3342766
https://arxiv.org/abs/1812.08738
https://doi.org/10.4310/CNTP.2015.v9.n1.a2
https://doi.org/10.4310/CNTP.2015.v9.n1.a2
https://zbmath.org/?q=an:1329.14074
https://mathscinet.ams.org/mathscinet-getitem?mr=3339853
https://doi.org/10.1007/s00029-016-0266-6
https://doi.org/10.1007/s00029-016-0266-6
https://zbmath.org/?q=an:1367.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=3624903
https://doi.org/10.1307/mmj/1592877614
https://doi.org/10.1307/mmj/1592877614
https://zbmath.org/?q=an:1483.14092
https://mathscinet.ams.org/mathscinet-getitem?mr=4278700
https://doi.org/10.1017/S0305004116000323
https://zbmath.org/?q=an:1396.14031
https://mathscinet.ams.org/mathscinet-getitem?mr=3581899
https://doi.org/10.1007/JHEP02(2013)143
https://zbmath.org/?q=an:1342.81513
https://mathscinet.ams.org/mathscinet-getitem?mr=3046532
https://doi.org/10.5802/jep.58
https://zbmath.org/?q=an:1426.14009
https://mathscinet.ams.org/mathscinet-getitem?mr=3694097
https://doi.org/10.1007/s00023-013-0233-0
https://doi.org/10.1007/s00023-013-0233-0
https://zbmath.org/?q=an:1291.81212
https://mathscinet.ams.org/mathscinet-getitem?mr=3147410
https://arxiv.org/abs/2009.13047
https://doi.org/10.1007/s11005-015-0789-3
https://doi.org/10.1007/s11005-015-0789-3
https://zbmath.org/?q=an:1323.35158
https://mathscinet.ams.org/mathscinet-getitem?mr=3395226
https://doi.org/10.1093/imrn/rnaa345
https://zbmath.org/?q=an:07570162
https://mathscinet.ams.org/mathscinet-getitem?mr=4458550
https://arxiv.org/abs/1809.02536
https://doi.org/10.1007/s00220-017-2899-5
https://doi.org/10.1007/s00220-017-2899-5
https://zbmath.org/?q=an:1372.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=3652492


G. Borot, R. Kramer, and Y. Schüler 144

[22] L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all
genera. J. High Energy Phys. 2006 (2006), no. 12, paper no. 026 Zbl 1226.81138
MR 2276715

[23] L. Chekhov, B. Eynard, and O. Marchal, Topological expansion of the ˇ-ensemble model
and quantum algebraic geometry in the sectorwise approach. Theoret. and Math. Phys.
166 (2011), no. 2, 141–185 Zbl 1354.81014 MR 3165804

[24] L. Chekhov and P. Norbury, Topological recursion with hard edges. Internat. J. Math. 30
(2019), no. 3, paper no. 1950014 Zbl 1429.14031 MR 3941980

[25] N. Chidambaram, E. Garcia-Failde, and A. Giacchetto, Relations on Mg;n and the negat-
ive r-spin Witten conjecture. 2022, arXiv:2205.15621

[26] A. Chiodo, The Witten top Chern class viaK-theory. J. Algebraic Geom. 15 (2006), no. 4,
681–707 Zbl 1117.14008 MR 2237266

[27] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and
r th roots. Compos. Math. 144 (2008), no. 6, 1461–1496 Zbl 1166.14018 MR 2474317

[28] B. Doyon, Twisted modules for vertex operator algebras. In Moonshine: the first quarter
century and beyond, pp. 144–187, London Math. Soc. Lecture Note Ser. 372, Cambridge
University Press, Cambridge, 2010 Zbl 1253.17018 MR 2681778

[29] P. Dunin-Barkowski, R. Kramer, A. Popolitov, and S. Shadrin, Loop equations and a proof
of Zvonkine’s qr-ELSV formula. 2022, arXiv:1905.04524

[30] P. Dunin-Barkowski, P. Norbury, N. Orantin, A. Popolitov, and S. Shadrin, Dubrovin’s
superpotential as a global spectral curve. J. Inst. Math. Jussieu 18 (2019), no. 3, 449–497
Zbl 1414.53079 MR 3936638

[31] T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and intersections
on moduli spaces of curves. Invent. Math. 146 (2001), no. 2, 297–327 Zbl 1073.14041
MR 1864018

[32] B. Eynard, Intersection numbers of spectral curves. 2011, arXiv:1104.0176
[33] B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of com-

plex curves. Commun. Number Theory Phys. 8 (2014), no. 3, 541–588 Zbl 1310.14037
MR 3282995

[34] B. Eynard, An overview of the topological recursion. In Proceedings of the International
Congress of Mathematicians – Seoul 2014, Vol. III, pp. 1063–1085, Kyung Moon Sa,
Seoul, 2014 Zbl 1373.14029 MR 3729064

[35] B. Eynard, Counting surfaces. CRM Aisenstadt Chair lectures. Prog. Math. Phys 70,
Birkhäuser, Basel, 2016 Zbl 1338.81005 MR 3468847

[36] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion. Com-
mun. Number Theory Phys. 1 (2007), no. 2, 347–452 Zbl 1161.14026 MR 2346575

[37] B. Eynard and N. Orantin, Topological recursion in enumerative geometry and random
matrices. J. Phys. A 42 (2009), no. 29, paper no. 293001 Zbl 1177.82049 MR 2519749

[38] B. Eynard and N. Orantin, Computation of open Gromov–Witten invariants for toric
Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Comm.
Math. Phys. 337 (2015), no. 2, 483–567 Zbl 1365.14072 MR 3339157

https://doi.org/10.1088/1126-6708/2006/12/026
https://doi.org/10.1088/1126-6708/2006/12/026
https://zbmath.org/?q=an:1226.81138
https://mathscinet.ams.org/mathscinet-getitem?mr=2276715
https://doi.org/10.1007/s11232-011-0012-3
https://doi.org/10.1007/s11232-011-0012-3
https://zbmath.org/?q=an:1354.81014
https://mathscinet.ams.org/mathscinet-getitem?mr=3165804
https://doi.org/10.1142/S0129167X19500149
https://zbmath.org/?q=an:1429.14031
https://mathscinet.ams.org/mathscinet-getitem?mr=3941980
https://arxiv.org/abs/2205.15621
https://doi.org/10.1090/S1056-3911-06-00444-9
https://zbmath.org/?q=an:1117.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=2237266
https://doi.org/10.1112/S0010437X08003709
https://doi.org/10.1112/S0010437X08003709
https://zbmath.org/?q=an:1166.14018
https://mathscinet.ams.org/mathscinet-getitem?mr=2474317
https://zbmath.org/?q=an:1253.17018
https://mathscinet.ams.org/mathscinet-getitem?mr=2681778
https://arxiv.org/abs/1905.04524
https://doi.org/10.1017/s147474801700007x
https://doi.org/10.1017/s147474801700007x
https://zbmath.org/?q=an:1414.53079
https://mathscinet.ams.org/mathscinet-getitem?mr=3936638
https://doi.org/10.1007/s002220100164
https://doi.org/10.1007/s002220100164
https://zbmath.org/?q=an:1073.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=1864018
https://arxiv.org/abs/1104.0176
https://doi.org/10.4310/CNTP.2014.v8.n3.a4
https://doi.org/10.4310/CNTP.2014.v8.n3.a4
https://zbmath.org/?q=an:1310.14037
https://mathscinet.ams.org/mathscinet-getitem?mr=3282995
https://zbmath.org/?q=an:1373.14029
https://mathscinet.ams.org/mathscinet-getitem?mr=3729064
https://doi.org/10.1007/978-3-7643-8797-6
https://zbmath.org/?q=an:1338.81005
https://mathscinet.ams.org/mathscinet-getitem?mr=3468847
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://zbmath.org/?q=an:1161.14026
https://mathscinet.ams.org/mathscinet-getitem?mr=2346575
https://doi.org/10.1088/1751-8113/42/29/293001
https://doi.org/10.1088/1751-8113/42/29/293001
https://zbmath.org/?q=an:1177.82049
https://mathscinet.ams.org/mathscinet-getitem?mr=2519749
https://doi.org/10.1007/s00220-015-2361-5
https://doi.org/10.1007/s00220-015-2361-5
https://zbmath.org/?q=an:1365.14072
https://mathscinet.ams.org/mathscinet-getitem?mr=3339157


Higher Airy structures and topological recursion for singular spectral curves 145

[39] C. Faber, S. Shadrin, and D. Zvonkine, Tautological relations and the r-spin Witten con-
jecture. Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 4, 621–658 Zbl 1203.53090
MR 2722511

[40] E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves. 2nd edn., Math. Surv.
Monogr. 88, American Mathematical Society, Providence, RI, 2004 Zbl 1106.17035
MR 2082709

[41] K. Iwaki, O. Marchal, and A. Saenz, Painlevé equations, topological type property and
reconstruction by the topological recursion. J. Geom. Phys. 124 (2018), 16–54
Zbl 1391.34140 MR 3754496

[42] T. J. Jarvis, T. Kimura, and A. Vaintrob, Gravitational descendants and the moduli space of
higher spin curves. In Advances in algebraic geometry motivated by physics, pp. 167–177,
Contemp. Math. 276, American Mathematical Society, Providence, RI, 2001
Zbl 0986.81105 MR 1837117

[43] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy
function. Comm. Math. Phys. 147 (1992), no. 1, 1–23 Zbl 0756.35081 MR 1171758

[44] M. Kontsevich and Y. Soibelman, Airy structures and symplectic geometry of topological
recursion. In Topological recursion and its influence in analysis, geometry, and topology,
pp. 433–489, Proc. Sympos. Pure Math. 100, American Mathematical Society, Providence,
RI, 2018 Zbl 1448.53078 MR 3888788

[45] R. Kramer, Cycles of curves, cover counts, and central invariants. PhD thesis, Korteweg–
de Vries Institute for Mathematics, 2019, https://hdl.handle.net/11245.1/588b7706-082d-
4836-9cf7-7ca5025f3d64

[46] R. Kramer, D. Lewanski, A. Popolitov, and S. Shadrin, Towards an orbifold generalization
of Zvonkine’s r-ELSV formula. Trans. Amer. Math. Soc. 372 (2019), no. 6, 4447–4469
Zbl 1430.14073 MR 4009392

[47] S. L. Lukyanov and V. A. Fateev, Conformally invariant models of two-dimensional
quantum field theory with Zn-symmetry. Soviet Phys. JETP 67 (1988), no. 3, 447–455
MR 966184

[48] T. Milanov and D. Lewanski, W -algebra constraints and topological recursion for AN -
singularity (with an appendix by Danilo Lewanski). Internat. J. Math. 27 (2016), no. 13,
paper no. 1650110 Zbl 1375.14041 MR 3589660

[49] P. Norbury, A new cohomology class on the moduli space of curves. To appear Geom.
Topol., arXiv:1712.03662

[50] R. Pandharipande, A. Pixton, and D. Zvonkine, Relations on Mg;n via 3-spin structures.
J. Amer. Math. Soc. 28 (2015), no. 1, 279–309 Zbl 1315.14037 MR 3264769

[51] R. Pandharipande, J. P. Solomon, and R. T. Tessler, Intersection theory on moduli of disks,
open KdV and Virasoro. 2022, arXiv:1409.2191

[52] A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class. In
Advances in algebraic geometry motivated by physics, pp. 229–249, Contemp. Math. 276,
American Mathematical Society, Providence, RI, 2001 Zbl 1051.14007 MR 1837120

[53] B. Safnuk, Topological recursion for open intersection numbers. Commun. Number Theory
Phys. 10 (2016), no. 4, 833–857 Zbl 1404.14034 MR 3636676

https://doi.org/10.24033/asens.2130
https://doi.org/10.24033/asens.2130
https://zbmath.org/?q=an:1203.53090
https://mathscinet.ams.org/mathscinet-getitem?mr=2722511
https://doi.org/10.1090/surv/088
https://zbmath.org/?q=an:1106.17035
https://mathscinet.ams.org/mathscinet-getitem?mr=2082709
https://doi.org/10.1016/j.geomphys.2017.10.009
https://doi.org/10.1016/j.geomphys.2017.10.009
https://zbmath.org/?q=an:1391.34140
https://mathscinet.ams.org/mathscinet-getitem?mr=3754496
https://doi.org/10.1090/conm/276/04520
https://doi.org/10.1090/conm/276/04520
https://zbmath.org/?q=an:0986.81105
https://mathscinet.ams.org/mathscinet-getitem?mr=1837117
https://doi.org/10.1007/BF02099526
https://doi.org/10.1007/BF02099526
https://zbmath.org/?q=an:0756.35081
https://mathscinet.ams.org/mathscinet-getitem?mr=1171758
https://doi.org/10.1090/pspum/100/01765
https://doi.org/10.1090/pspum/100/01765
https://zbmath.org/?q=an:1448.53078
https://mathscinet.ams.org/mathscinet-getitem?mr=3888788
https://hdl.handle.net/11245.1/588b7706-082d-4836-9cf7-7ca5025f3d64
https://hdl.handle.net/11245.1/588b7706-082d-4836-9cf7-7ca5025f3d64
https://doi.org/10.1090/tran/7793
https://doi.org/10.1090/tran/7793
https://zbmath.org/?q=an:1430.14073
https://mathscinet.ams.org/mathscinet-getitem?mr=4009392
https://mathscinet.ams.org/mathscinet-getitem?mr=966184
https://doi.org/10.1142/S0129167X1650110X
https://doi.org/10.1142/S0129167X1650110X
https://zbmath.org/?q=an:1375.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=3589660
https://arxiv.org/abs/1712.03662
https://doi.org/10.1090/S0894-0347-2014-00808-0
https://zbmath.org/?q=an:1315.14037
https://mathscinet.ams.org/mathscinet-getitem?mr=3264769
https://arxiv.org/abs/1409.2191
https://doi.org/10.1090/conm/276/04523
https://zbmath.org/?q=an:1051.14007
https://mathscinet.ams.org/mathscinet-getitem?mr=1837120
https://doi.org/10.4310/CNTP.2016.v10.n4.a5
https://zbmath.org/?q=an:1404.14034
https://mathscinet.ams.org/mathscinet-getitem?mr=3636676


G. Borot, R. Kramer, and Y. Schüler 146

[54] S. Shadrin, BCOV theory via Givental group action on cohomological fields theories.
Mosc. Math. J. 9 (2009), no. 2, 411–429 Zbl 1184.14070 MR 2568443

[55] S. Shadrin, L. Spitz, and D. Zvonkine, Equivalence of ELSV and Bouchard–Mariño con-
jectures for r-spin Hurwitz numbers. Math. Ann. 361 (2015), no. 3-4, 611–645
Zbl 1311.14054 MR 3319543

[56] J. P. Solomon and R. J. Tessler, Intersection theory on the moduli space of graded Riemann
surfaces with boundary. In preparation

[57] C. Teleman, The structure of 2D semi-simple field theories. Invent. Math. 188 (2012),
no. 3, 525–588 Zbl 1248.53074 MR 2917177

[58] R. J. Tessler, The combinatorial formula for open gravitational descendents. To appear in
Geom. Topol., arXiv:1507.04951

[59] E. Witten, Two-dimensional gravity and intersection theory on moduli space. pp. 243–310,
Surv. Differ. Geom. 1, Lehigh University, Bethlehem, PA, 1991 Zbl 0757.53049
MR 1144529

[60] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity.
In Topological methods in modern mathematics (Stony Brook, NY, 1991), pp. 235–269,
Publish or Perish, Houston, TX, 1993 Zbl 0812.14017 MR 1215968

Communicated by Adrian Tanasă
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